1
|
Hu A, Zhu Y, Gao Z, Zheng J, Zhou D, Zhang L, Pan S, Yang J, Xu S. Study on the correlation between microbial community succession and main flavor substances in the mashes of Tanggou liquor. Food Chem X 2025; 27:102486. [PMID: 40351497 PMCID: PMC12063030 DOI: 10.1016/j.fochx.2025.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
This study employed integrated omics to investigate microbial dynamics and flavor development in Tanggou wine fermentation. High-throughput sequencing identified 182 bacterial and 82 fungal OTUs, with late-stage DLD samples exhibiting peak diversity, including 49 unique bacteria and 14 fungi. Lactobacillus dominated bacterial communities at 99.14-99.85%, creating acidic conditions that enhanced lactic acid synthesis and ester stability. Kazachstania prevailed in fungal communities at 73.28-97.72%, mediating β-glucosidase-driven terpene liberation. Metabolomics revealed a 12.7-fold increase in tricarboxylic acids during DLD phase, while GC-IMS detected 77 volatiles dominated by esters, notably ethylhexanoate and phenylethanol. Four strong-flavor Baijiu signature esters peaked in DLD base liquor through stage-specific accumulation. Microbial network analysis demonstrated Lactobacillus-Kazachstania synergy in ethyl lactate production, while thermophilic actinomycetes modulated ethyl hexanoate/pyrazine ratios via lipase activity. These findings highlight microbial consortium engineering as an effective strategy for flavor optimization in traditional liquor manufacturing.
Collapse
Affiliation(s)
- Antuo Hu
- Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaohui Zhu
- Jiangsu Tanggou Lianghe Liquor Industry Co., Ltd., Jiangsu Provincial Technology Center, Lianyungang 222000, China
| | - Zhan Gao
- Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jun Zheng
- Jiangsu Tanggou Lianghe Liquor Industry Co., Ltd., Jiangsu Provincial Technology Center, Lianyungang 222000, China
| | - Dazhong Zhou
- Jiangsu Tanggou Lianghe Liquor Industry Co., Ltd., Jiangsu Provincial Technology Center, Lianyungang 222000, China
| | - Liang Zhang
- Jiangsu Tanggou Lianghe Liquor Industry Co., Ltd., Jiangsu Provincial Technology Center, Lianyungang 222000, China
| | - Saikun Pan
- Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Yang
- Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Sheng Xu
- Jiangsu Tanggou Lianghe Liquor Industry Co., Ltd., Jiangsu Provincial Technology Center, Lianyungang 222000, China
| |
Collapse
|
2
|
Guan T, Wu X, Hou R, Tian L, Huang Q, Zhao F, Liu Y, Jiao S, Xiang S, Zhang J, Li D, Luo J, Jin Z, He Z. Application of Clostridium butyricum, Rummeliibacillus suwonensis, and Issatchenkia orientalis for Nongxiangxing baijiu fermentation: Improves the microbial communities and flavor of upper fermented grain. Food Res Int 2023; 169:112885. [PMID: 37254333 DOI: 10.1016/j.foodres.2023.112885] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
Ethyl hexanoate and ethyl butyrate are essential to the flavor compounds in Nongxiangxing baijiu, but low levels of these two esters in upper fermented grains (FG) decreases the quality of upper distilled baijiu, representing the main challenge in Nongxiangxing baijiu production. This paper enhanced fermentation by inoculating functional Clostridium butyricum, Rummeliibacillus suwonensis, and Issatchenkia orientalis strains into upper FG. The results showed that the ethyl butyrate content in the upper FG increased significantly and the content of ethyl hexanoate did improve from the results of many determinations. High-throughput sequencing indicated that the dominant phyla in the FG were Firmicutes, Actinobacteriota, Proteobacteria, Ascomycota, and Basidiomycota. The canonical correspondence analysis (CCA) and person correlation network revealed the relationship between the microbial community, physicochemical environment, and flavor compounds. The temperature, oxygen, and acidity were closely related to the microbial community, while most flavor compounds were positively correlated with Caldicoprobacter, Caproiciproducens, Delftia, Hydrogenispora, Thermoactinomyces, Issatchenkia Bacillus, and Aspergillus. These results helped improve the quality of Nongxiangxing baijiu.
Collapse
Affiliation(s)
- Tongwei Guan
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China.
| | - Xiaotian Wu
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Rui Hou
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Lei Tian
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Qiao Huang
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Fan Zhao
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Ying Liu
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | - Shirong Jiao
- College of Food and Biological Engineering, Xihua University Food Microbiology Key Laboratory of Sichuan Province, Chengdu 610039, PR China
| | | | - Jiaxu Zhang
- Chengdu Shuzhiyuan of Liquor Co., Ltd, Chengdu 611330, PR China
| | - Dong Li
- Chengdu Shuzhiyuan of Liquor Co., Ltd, Chengdu 611330, PR China
| | - Jing Luo
- Chengdu Shuzhiyuan of Liquor Co., Ltd, Chengdu 611330, PR China
| | - Zhengyu Jin
- School of Food and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zongjun He
- Sichuan Tujiu Liquor Co., Ltd, Chengdu 637919, China
| |
Collapse
|
3
|
Shoubao Y, Jie Y, TingTing S, Jiaquan G, Cuie S. Yeast diversity in pit mud and related volatile compounds in fermented grains of chinese strong-flavour liquor. AMB Express 2023; 13:56. [PMID: 37291367 DOI: 10.1186/s13568-023-01562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Chinese strong-flavour liquor is produced via a traditional solid-state fermentation strategy facilitated by live microorganisms in pit mud-based cellars. For the present analysis, pit mud samples from different spatial locations within fermentation cellars were collected, and the yeast communities therein were assessed via culture-based and denaturing gradient gel electrophoresis (DGGE) approaches. These analyses revealed significant differences in the composition of yeast communities present in different layers of pit mud. In total, 29 different yeast species were detected, and principal component analyses revealed clear differences in microbial diversity in pit mud samples taken from different cellar locations. Culture-dependent strategies similarly detected 20 different yeast species in these samples. However, while Geotrichum silvicola, Torulaspora delbrueckii, Hanseniaspora uvarum, Saturnispora silvae, Issatchenkia orientalis, Candida mucifera, Kazachstania barnettii, Cyberlindnera jadinii, Hanseniaspora spp., Alternaria tenuissima, Cryptococcus laurentii, Metschnikowia spp., and Rhodotorula dairenensis were detected via a PCR-DGGE approach, they were not detectable in culture-dependent analyses. In contrast, culture-based approaches led to the identification of Schizosaccharomyces pombe and Debaryomyces hansenii in these pit mud samples, whereas they were not detected using DGGE fingerprints profiles. An additional HS-SPME-GC-MS-based analysis of the volatile compounds present in fermented grains samples led to the identification of 66 such compounds, with the highest levels of volatile acids, esters, and alcohols being detected in fermented grains from lower layer samples. A canonical correspondence analysis (CCA) suggested they were significant correlations between pit mud yeast communities and associated volatile compounds in fermented grains.
Collapse
Affiliation(s)
- Yan Shoubao
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
- Anhui Yingjia Group Co., Ltd, Luan, 237271, China
| | - Yang Jie
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
| | - Shen TingTing
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
| | | | - Shi Cuie
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China.
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China.
| |
Collapse
|
4
|
He M, Jin Y, Liu M, Yang G, Zhou R, Zhao J, Wu C. Metaproteomic investigation of enzyme profile in daqu used for the production of Nongxiangxing baijiu. Int J Food Microbiol 2023; 400:110250. [PMID: 37247555 DOI: 10.1016/j.ijfoodmicro.2023.110250] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Enzymes and microbiota in daqu are essential for the brewing of Nongxiangxing baijiu. Uncover the key enzymes and functional strains in daqu is beneficial to improve the flavor and quality of Nongxiangxing baijiu. In this study, metaproteome technology was employed to determine the enzyme profiles in Nongxiangxing daqu, and strains with high saccharification activity were screened and identified. 933 proteins were identified in daqu, of which 463 belonged to enzymes, including 140 oxidoreductases, 98 transferases, 91 hydrolases, 49 ligases, 41 lyases and 27 isomerases, and hydrolase is the enzyme with the highest abundance in baijiu brewing. Among hydrolases, a total of 36 carbohydrate metabolism-related enzymes (CMEs) were identified, and 12 of them were key enzymes related to glycoside hydrolysis. Four major glycoside hydrolysis enzymes glucoamylase (EC 3.2.1.3), glucan 1,4-alpha-glucosidase (EC 3.2.1.3), glucanase (EC 3.2.1.-) and β-glucosidase (EC 3.2.1.21) were revealed, and their sources were Byssochlamys spectabilis, Lichtheimia ramosa and Thermoascus aurantiacus, respectively. Then, strains Aspergillus A2, A3, A7, Lichtheimia L1, L4, L5, and Saccharomycopsis S2, S4, S6 with high saccharifying enzyme-producing capacity were screened through culture-dependent approach. Resents presented in this study can further reveal the enzyme profiles and identify the main functional strains in daqu, which can provide theoretical support for the brewing of Nongxiangxing baijiu.
Collapse
Affiliation(s)
- Muwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | | | | | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | | | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Huang J, Qiao C, Wang X, Gao Y, Zhao J, Luo H, Wang Y, Hou C, Huo D. The microsphere of sodium alginate-chitosan-Pichia kudriavzevii enhanced esterase activity to increase the content of esters in Baijiu solid-state fermentation. Food Chem 2023; 407:135154. [PMID: 36502727 DOI: 10.1016/j.foodchem.2022.135154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Pichia kudriavzevii was one of the important aroma-producing fungi in the solid-state fermentation of Baijiu, and immobilization was an effective strategy for improving microbial performance. Herein, P. kudriavzevii cells were immobilized in a gel network that crosslinked by chitosan and sodium alginate to form sodium alginate/chitosan-P. kudriavzevii microspheres (SA/CS-PMs). Their structural characteristics and formation processes were characterized by SEM and FT-IR. The effect of synthesis conditions on the performance of microspheres were determined by single-factor experiments. Under the optimal conditions, the SA/CS-PMs could increase the amylase activity of the fermentation broth by 57.18%, the esterase activity by 66.13%, the content of ester by 67.04%, and could be reused at least three times. Further research results indicated that the content of ester could be increased significantly in Baijiu solid-state fermentation with the SA/CS-PMs. In conclusion, the SA/CS-PMs could improve the ester production ability of P. kudriavzevii by increasing the esterase activity, which was a valuable exploration of directional biosynthesis and a feasible strategy to improve solid-state fermentation quality.
Collapse
Affiliation(s)
- Jiaqing Huang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Cailin Qiao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Xinrou Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yuwei Gao
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jinsong Zhao
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China
| | - Yongzhong Wang
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Changjun Hou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, Sichuan, China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Fu G, Cai W, Dong B, Wan Y, Pan F, Zheng F, Chen Y, Deng M, Huang B. Effects of bio-augmented Daqu on microbial community, aroma compounds and physicochemical parameters of fermented grains during the brewing of Chinese special-flavor baijiu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:273-282. [PMID: 35859417 DOI: 10.1002/jsfa.12139] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/12/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Bio-augmented Daqu is used to improve the microbial community and physicochemical parameters of fermented grains, thus affecting the flavor and quality of baijiu. This study investigated the effects of bio-augmented Daqu inoculated with Aspergillus niger NCUF413.1 and Saccharomyces cerevisiae NCUF304.1 on the microbial community, aroma compounds, and physicochemical parameters of fermented grains during special-flavor baijiu brewing. RESULTS Compared with the control group (CG), the utilization of starch and production of ethanol in the inoculated group (IG) increased by 3.55% and 12.59%, respectively. The use of bio-augmented Daqu changed the bacterial communities. For example, Kroppenstedsia was the dominant bacterial genus (the relative abundance was about 22%) in the CG while Lactobacillus was the main dominant genus (the relative abundance was more than 30%) in the IG on days 20-30. Lactobacillus showed a significant positive correlation with the aroma compounds. The use of bio-augmented Daqu increased the aroma compound content - such as the ethyl heptanoate and ethyl hexanoate content. CONCLUSION The addition of bio-augmented Daqu with A. niger and S. cerevisiae could change microbial communities, resulting in an increase in the yield of ethanol and the aroma compound content of fermented grains, thus improving the quality of baijiu. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guiming Fu
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Biao Dong
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Fei Pan
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Fuping Zheng
- Beijing Laboratory of Food Quality and Safety & School of Food and Chemical Engineering, Beijing Technology & Business University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition & Human Health, Beijing Technology & Business University, Beijing, China
| | - Yanru Chen
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Mengfei Deng
- State Key Laboratory of Food Science and Technology & College of food Science and Technology, Nanchang University, Nanchang, China
| | - Bingjing Huang
- Zhangshugong Wine and Spirits Co. Ltd, Jiangxi Zhangshu Gongjiu Group Company, Zhangshu, China
| |
Collapse
|
7
|
Shoubao Y, Yonglei J, Qi Z, Shunchang P, Cuie S. Bacterial diversity associated with volatile compound accumulation in pit mud of Chinese strong-flavor baijiu pit. AMB Express 2023; 13:3. [PMID: 36609631 PMCID: PMC9825687 DOI: 10.1186/s13568-023-01508-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023] Open
Abstract
Pit mud quality is a key parameter that impacts the quality of Chinese strong-flavor Baijiu production.This study was developed to explore spatial bacterial community distributions and the relationships between these distributions and the volatile compound accumulation within the pit mud used in the production of Chinese strong-flavor Baijiu. The results revealed Lactobacillus pasteurii and Limnochorda pilosa were found to be the dominant bacteria present in the upper wall, middle wall, and bottom pit mud layers, whereas the Clostridium genus was detectable at high levels in the lower layer of the pit wall and played a role in contributing to the overall aroma and flavor compounds in produced Chinese strong-flavor Baijiu, with Clostridium abundance being strongly correlated with caproic acid, ethyl caproate, ethyl butyrate, and hexanol levels as well as moderately correlated with butyric acid levels. The abundance of the Lactobacillus genus was positively correlated with levels of ethyl lactate, 1-butanol, and 2,3-butanediol. Limnochorda pilosa was closely associated with ethyl acetate levels. Additionally, the correlations between bacterial communities and chemical properties also investigated, and the results demonstrated PO43-, total carbon, K+, humus, NH4+-N, and Mg2+ levels significantly affected the bacterial community structure of pit mud, and they were positively correlated with the relative abundance of Clostridium. Together, these findings can serve as a foundation for future studies exploring the mechanisms whereby volatile compounds accumulate in different pit mud layers, which facilitates the fermentation regulation and pit mud quality improvement of Chinese strong-flavor Baijiu.
Collapse
Affiliation(s)
- Yan Shoubao
- grid.464320.70000 0004 1763 3613Department of biology engineering, Huainan Normal University, Huainan, 232038 Anhui China
| | - Jia Yonglei
- grid.412605.40000 0004 1798 1351Liquor Making Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Yibin, 644000 China
| | - Zhang Qi
- grid.464320.70000 0004 1763 3613Department of biology engineering, Huainan Normal University, Huainan, 232038 Anhui China
| | - Pu Shunchang
- Department of biology and food engineering, Bozhou University, Bozhou, 236800 China
| | - Shi Cuie
- grid.464320.70000 0004 1763 3613Department of biology engineering, Huainan Normal University, Huainan, 232038 Anhui China
| |
Collapse
|
8
|
Fungal Diversity Profiles in Pit Mud Samples from Chinese Strong-Flavour Liquor Pit. Foods 2022; 11:foods11223544. [PMID: 36429136 PMCID: PMC9689218 DOI: 10.3390/foods11223544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Pit mud, a specific fermented soil, is an essential material for the fermentation of Chinese strong-flavour liquor. However, few studies to date have sought to characterize the spatial profiles of pit mud fungal communities in fermentation cellars from Chinese strong-flavour liquor distilleries. In this analysis, differences in fungal community structures and physicochemical properties in pit mud samples from different spatial positions within fermentation cellars were analyzed, revealing unique characteristic multidimensional pit mud fungal community profiles. Penicillium roqueforti, Pichia kudriavzevii, Aotearoamyces nothofagi, Penicillium robsamsonii, Alternaria arborescens, Trichosporon insectorum, Seltsamia ulmi, Trichosporon coremiiforme, Malassezia restricta were dominant in the pit mud samples form the upper cellar wall, whereas Metarhizium frigidum, Calonectria pseudoreteaudii, Penicillium clavigerum, Fusarium equiseti, Simplicillium chinense, Aspergillus intermedius, Trichosporon coremiiforme, Fusarium circinatum, Alternaria radicina, Aspergillus heterocaryoticus were predominant in the middle cellar wall. Alternaria radicina, Cladosporium chasmanthicola, Alternaria helianthiinficiens, Penicillium argentinense, Antarctomyces psychrotrophicus, and Trichosporon inkin are majorly present in the down cellar wall layer. Bipolaris axonopicola, Ramgea ozimecii, Penicillium argentinense, Calonectria queenslandica, Metarhizium robertsii, and Penicillium roqueforti were identified as the dominant fungi in pit mud samples from the cellar bottom. Additionally, Alternaria destruens and Alternaria doliconidium are present at notably high levels in all layers of pit mud samples. Moisture, pH, PO43-, acetic acid, humus, K+, Mg2+, Ca2+, butyric acid, and caproic acid levels in these different pit mud positions exhibited a rising incremental pattern from the upper wall layer to the bottom layer, whereas lactic acid levels were significantly lower in the bottom pit mud layer relative to these other layers. Moisture, pH, and NH4+-N were identified as the three most significant factors associated with fungal community composition through a redundancy analysis. Overall, these findings may offer a theoretical foundation for future efforts to improve or standardize artificial pit mud.
Collapse
|
9
|
Tang Q, Huang J, Zhang S, Qin H, Dong Y, Wang C, Li D, Zhou R. Characterizing the correlation between species/strain-specific starter with community assembly and metabolic regulation in Xiaoqu Pei. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100170. [DOI: 10.1016/j.crmicr.2022.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Sun H, Ni B, Yang J, Qin Y. Nitrogenous compounds and Chinese baijiu: a review. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huilai Sun
- College of Bioengineering Sichuan University of Science & Engineering Zigong 643000 China
| | - Bin Ni
- College of Bioengineering Sichuan University of Science & Engineering Zigong 643000 China
- National Engineering Research Center of Solid‐State Brewing Luzhou Laojiao Group Co. Ltd. Luzhou 646000 PR China
| | - Jiangang Yang
- College of Bioengineering Sichuan University of Science & Engineering Zigong 643000 China
| | - Yue Qin
- College of Bioengineering Sichuan University of Science & Engineering Zigong 643000 China
| |
Collapse
|
11
|
Agnihotri S, Yin DM, Mahboubi A, Sapmaz T, Varjani S, Qiao W, Koseoglu-Imer DY, Taherzadeh MJ. A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered 2022; 13:1249-1275. [PMID: 34738864 PMCID: PMC8805862 DOI: 10.1080/21655979.2021.1996044] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Sustainable provision of chemicals and materials is undoubtedly a defining factor in guaranteeing economic, environmental, and social stability of future societies. Among the most sought-after chemical building blocks are volatile fatty acids (VFAs). VFAs such as acetic, propionic, and butyric acids have numerous industrial applications supporting from food and pharmaceuticals industries to wastewater treatment. The fact that VFAs can be produced synthetically from petrochemical derivatives and also through biological routes, for example, anaerobic digestion of organic mixed waste highlights their provision flexibility and sustainability. In this regard, this review presents a detailed overview of the applications associated with petrochemically and biologically generated VFAs, individually or in mixture, in industrial and laboratory scale, conventional and novel applications.
Collapse
Affiliation(s)
- Swarnima Agnihotri
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Dong-Min Yin
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Tugba Sapmaz
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | | - Wei Qiao
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
| | - Derya Y. Koseoglu-Imer
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | |
Collapse
|
12
|
Zhu M, Zheng J, Xie J, Zhao D, Qiao ZW, Huang D, Luo HB. Effects of environmental factors on the microbial community changes during medium-high temperature Daqu manufacturing. Food Res Int 2022; 153:110955. [DOI: 10.1016/j.foodres.2022.110955] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/25/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022]
|
13
|
Pu S, Zhang Y, Lu N, Shi C, Yan S. Yeasts from Chinese strong flavour Daqu samples: isolation and evaluation of their potential for fortified Daqu production. AMB Express 2021; 11:176. [PMID: 34952959 PMCID: PMC8709808 DOI: 10.1186/s13568-021-01337-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/15/2021] [Indexed: 11/14/2022] Open
Abstract
In total, 16 yeast were isolated from Chinese strong flavour Daqu samples and underwent RAPD analysis and identification. Totally, 11 different species were identified among these isolates including Saccharomyces cerevisiae, Hanseniaspora vineae, Pichia kluyveri, Trichosporon asahii, Wickerhamomyces anomalus, Kluyveromyces lactis, Yarrowia lipolytica, Wickerhamomyces mori, Galactomyces geotrichum, Dabaryomyces hansenii, and Saccharomyces kudriavzevii. To understand the impact of these yeast strains on the quality and flavour of Daqu, we then assessed volatile compounds associated with Daqu samples fermented with corresponding strains. These analyses revealed strain YE006 exhibited the most robust ability to produce ethanol via fermentation but yielded relatively low quantities of volatile compounds, whereas strain YE010 exhibited relatively poor fermentation efficiency but produced the greatest quantity of volatile compounds. These two yeast strains were then utilized in a mixed culture to produce fortified Daqu, with the optimal inoculum size being assessed experimentally. These analyses revealed that maximal fermentation, saccharifying, liquefying, and esterifying power as well as high levels of volatile compounds were achieved when using a 2% inoculum composed of YE006/YE010 at a 1:2 (v/v) ratio. When the liquor prepared using this optimized fortified Daqu was compared to unfortified control Daqu, the former was found to exhibit significantly higher levels of flavour compounds and better sensory scores. Overall, our findings may provide a reliable approach to ensuring Daqu quality and improving the consistency and flavour of Chinese strong-flavour liquor through bioaugmentation.
Collapse
|
14
|
Zhang M, Wu X, Mu D, Xu B, Xu X, Chang Q, Li X. Profiling the influence of physicochemical parameters on the microbial community and flavor substances of zaopei. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6300-6310. [PMID: 33969489 DOI: 10.1002/jsfa.11299] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/05/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Strong-flavor baijiu is a traditional distilled alcoholic beverage with a long history in China. The fermented grains play a pivotal role in the production of baijiu. The purpose of this study was to evaluate and compare the microbiota and flavor substances present in fermented zaopei (ZP) from pits of different ages. High-throughput sequencing, headspace solid-phase microextraction gas chromatography-mass spectrometry, principal component analysis, community composition analysis, and redundancy analysis were used to analyze and evaluate the impact of environmental factors on microbial communities and flavor substances. RESULTS Six genera of bacteria (e.g., Caproiciproducens, Syntrophaceticus, Sedimentibacter, Hydrogenispora, Pelotomaculum and Bacillus) and seven genera of fungi (Cladosporium, Debaryomyces, Dipodascus, Auxarthron, Cephalotrichum, unclassified Stachybotryaceae, unclassified Microascaceae and Cephalotrichum) notably affected the production of hexanoic acid (an important flavor compound). Moisture and alcohol content also had considerable effects on the production of the flavor compounds such as ethyl lactate, hexanoic acid, and ethyl hexanoate. The profiles of volatile compounds present in ZP were different between the aged and new pits; these profiles were mainly reflected in the concentration and types of alcohols, aldehydes, esters, and aromatic compounds. CONCLUSIONS This paper provides a comprehensive overview of the physicochemical parameters, flavor substances, and microbial population distribution of ZP. Characterization of various ZP samples help to elucidate the fermentation mechanisms and offer a theoretical reference to control and enhance the quality of Baijiu. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingzhu Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China
| | - Xuefeng Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China
| | - Dongdong Mu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China
| | - Boyang Xu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China
| | - Xianghui Xu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China
| | - Qiang Chang
- Technology R&D Department, Anhui WenWang Brewery Co., Ltd., Linquan, PR China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, PR China
| |
Collapse
|
15
|
Detection of viable and total fungal community in zaopei of Chinese strong-flavor baijiu using PMA combined with qPCR and HTS based on ITS2 region. BMC Microbiol 2021; 21:274. [PMID: 34625023 PMCID: PMC8499482 DOI: 10.1186/s12866-021-02334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022] Open
Abstract
Background Chinese strong-flavor baijiu (CSFB), one of the three major baijiu types, is the most popular baijiu type among consumers in China. A variety of microbes are involved in metabolizing raw materials to produce ethanol and flavor substances during fermentation, which fundamentally determined the quality of baijiu. It is of great importance to study microbial community of fermented grains (zaopei) during baijiu brewing process for improving its quality. In this study, we firstly used propidium monoazide (PMA) to treat zaopei samples from 5-year pit and 20-year pit for removing the interference of non-viable fungi, and analyzed the diversity of total fungi and viable fungi by quantitative PCR (qPCR) and high-throughput sequencing (HTS) based on ITS2 gene. Results The results showed that total fungi and viable fungi displayed no significant differences at OTU, phylum, or genus levels during fermentation within two kinds of pits. A total of 6 phyla, 19 classes, and 118 genera in fungi were found based on OTUs annotation in zaopei samples from 5-year pit and 20-year pit. Besides, non-viable fungi had little effect on the fungal community diversity during the fermentation cycle. It was found that the most dominant viable fungi belonged to Saccharomyces, Kazachstania, Naumovozyma, and Trichosporon, and Naumovozyma was firstly detected in zaopei samples of CSFB. Moreover, based on the variation of flavor substances in zaopei samples, the quality of CSFB produced from older pit was better than that produced from younger pit. Conclusion The non-viable fungi had little effect on the fungal diversity, structure, and relative abundance in zaopei samples of CSFB, and Naumovozyma was firstly detected in zaopei samples of CSFB. Our findings can be applied as guidance for improving the quality and stability of CSFB. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02334-8.
Collapse
|
16
|
Yan Q, Zhang K, Zou W, Hou Y. Three main flavour types of Chinese Baijiu: characteristics, research, and perspectives. JOURNAL OF THE INSTITUTE OF BREWING 2021. [DOI: 10.1002/jib.669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qin Yan
- Bioengineering College Sichuan University of Science & Engineering Zigong Sichuan 643000 China
| | - Kaizheng Zhang
- Bioengineering College Sichuan University of Science & Engineering Zigong Sichuan 643000 China
| | - Wei Zou
- Bioengineering College Sichuan University of Science & Engineering Zigong Sichuan 643000 China
| | - Yaochuan Hou
- Bioengineering College Sichuan University of Science & Engineering Zigong Sichuan 643000 China
| |
Collapse
|
17
|
Liu C, Gong X, Zhao G, Soe Htet MN, Jia Z, Yan Z, Liu L, Zhai Q, Huang T, Deng X, Feng B. Liquor Flavour Is Associated With the Physicochemical Property and Microbial Diversity of Fermented Grains in Waxy and Non-waxy Sorghum ( Sorghum bicolor) During Fermentation. Front Microbiol 2021; 12:618458. [PMID: 34220729 PMCID: PMC8247930 DOI: 10.3389/fmicb.2021.618458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 05/10/2021] [Indexed: 12/01/2022] Open
Abstract
The fermentation process of Chinese Xifeng liquor involves numerous microbes. However, the sources of microbes in fermented grain and the link between liquor flavour and physicochemical properties and microbial diversity during fermentation still remain unknown. Herein, two waxy (JiNiang 2 [JN-2] and JinNuo 3 [JN-3]) and four non-waxy (JiZa 127 [JZ-127], JinZa 34 [JZ-34], LiaoZa 19 [LZ-19], and JiaXian [JX]) sorghum varieties were selected for the comprehensive analysis of the relationship between liquor flavour and the physicochemical properties and microbial diversity of fermented grains. Results showed that ethyl acetate was the main flavour component of JZ-127, JZ-34, and JX, whereas ethyl lactate was mainly detected in JN-2, JN-3, and LZ-19. Ethyl lactate accounted for half of the ethyl acetate content, and JX exhibited a higher liquor yield than the other sorghum varieties. The fermented grains of waxy sorghum presented higher temperature and reducing sugar contents but lower moisture and starch contents than their non-waxy counterparts during fermentation. We selected JN-3 and JX sorghum varieties to further investigate the microbial changes in the fermented grains. The bacterial diversity gradually reduced, whereas the fungal diversity showed nearly no change in either JN-3 or JX. Lactobacillus was the most abundant bacterial genus, and its level rapidly increased during fermentation. The abundance of Lactobacillus accounted for the total proportion of bacteria in JX, and it was higher than that in JN-3. Saccharomyces was the most abundant fungal genus in JX, but its abundance accounted for a small proportion of fungi in JN-3. Four esters and five alcohols were significantly positively related to Proteobacteria, Bacteroidetes, and Actinobacteria; Alphaproteobacteria, Actinobacteria, and Bacteroidia; Bacillales, Bacteroidales, and Rhodospirillales; and Acetobacter, Pediococcus, and Prevotella_7. This positive relation is in contrast with that observed for Firmicutes, Bacilli, Lactobacillales, and Lactobacillus. Meanwhile, Aspergillus was the only fungal microorganism that showed a significantly negative relation with such compounds (except for butanol and isopentanol). These findings will help in understanding the fermentation mechanism and flavour formation of fermented Xifeng liquor.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Life Sciences, Northwest A&F University, Yangling, China.,College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A&F University, Yangling, China
| | - Xiangwei Gong
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A&F University, Yangling, China
| | - Guan Zhao
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A&F University, Yangling, China
| | - Maw Ni Soe Htet
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A&F University, Yangling, China
| | - Zhiyong Jia
- Shaanxi Xifeng Liquor Co., Ltd., Baoji, China
| | - Zongke Yan
- Shaanxi Xifeng Liquor Co., Ltd., Baoji, China
| | - Lili Liu
- Shaanxi Xifeng Liquor Co., Ltd., Baoji, China
| | | | - Ting Huang
- Shaanxi Xifeng Liquor Co., Ltd., Baoji, China
| | - Xiping Deng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Baili Feng
- College of Agronomy, State Key Laboratory of Crop Stress Biology in Arid Areas/Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Analysis of spatial distribution of bacterial community associated with accumulation of volatile compounds in Jiupei during the brewing of special-flavor liquor. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Li W, Fan G, Fu Z, Wang W, Xu Y, Teng C, Zhang C, Yang R, Sun B, Li X. Effects of fortification of Daqu with various yeasts on microbial community structure and flavor metabolism. Food Res Int 2019; 129:108837. [PMID: 32036879 DOI: 10.1016/j.foodres.2019.108837] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 10/25/2022]
Abstract
Fortification of Daqu with isolated functional strains can influence the metabolic activity of the microbial community, and thus alter the flavors of the Baijiu produced with Daqu as a fermentation starter. Here, we analyzed the microbial community dynamics of, and volatile compound production by, Daqu fortified respectively with three high-yield ethyl caproate-producing yeasts (Saccharomyces cerevisiae Y7#09, Hyphopichia burtonii F12507 and Clavispora lusitaniae YX3307), or with a mixture of these three strains, during the fermentation of Baijiu. The microbial community was investigated using Illumina HiSeq technology. Three bacterial genera (Bacillus, Lactobacillus and Enterobacter) and four fungal genera (Pichia, Clavispora, Saccharomyces and Saccharomycopsis) were dominant in the microbial communities. The volatile compounds were examined by gas chromatography-mass spectrometry. Forty-one flavor compounds were detected in all samples, including seven alcohols, 26 esters and four aldehydes. In particular, an increase in ethyl caproate content was associated with Daqu fortified with S. cerevisiae Y7#09, C. lusitaniae YX3307, or the mixed inoculum. The ester content of these fortified Daqu was higher in the later stage of the fermentation than that in unfortified Daqu, or in Daqu fortified with H. burtonii F12507. Our results show that fortification of Daqu with aroma-producing yeast strains influenced the microbial community composition in the Daqu and affected its metabolic activity. Overall, this study reveals the features of fortified Daqu microbial communities in different phases and improves understanding of the relationships between aroma-producing yeast and the metabolic activity of microbial communities in Baijiu production.
Collapse
Affiliation(s)
- Weiwei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Zhilei Fu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Wenhua Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Youqiang Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China
| | - Ran Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing 100048, China.
| |
Collapse
|
20
|
Cai X, Shen Y, Chen M, Zhong M, Zhou Y, Luo A. Characterisation of volatile compounds in Maotai
flavour liquor during fermentation and distillation. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xuemei Cai
- College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu Sichuan 610065 China
- Cuisine Science Key Laboratory of Sichuan Province; Sichuan Tourism University; Chengdu Sichuan 610100 China
| | - Yi Shen
- Sichuan Gulin Langjiu Distillery Co., Ltd; Luzhou Sichuan 646500 China
| | - Mengyuan Chen
- College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Mingye Zhong
- College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Yulin Zhou
- College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu Sichuan 610065 China
| | - Aimin Luo
- College of Light Industry, Textile and Food Engineering; Sichuan University; Chengdu Sichuan 610065 China
| |
Collapse
|
21
|
Yan S, Xiangsong C, Xiang X. Improvement of the aroma of lily rice wine by using aroma-producing yeast strain Wickerhamomyces anomalus HN006. AMB Express 2019; 9:89. [PMID: 31214795 PMCID: PMC6582127 DOI: 10.1186/s13568-019-0811-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/08/2019] [Indexed: 11/19/2022] Open
Abstract
A fruity aroma-producing yeast strain was isolated with the aim of improving the aroma of fermented lily rice wine, and identified as Wickerhamomyces anomalus HN006. In addition, the effects of adding solid residues of previous fermentation cycles, and of fungus α-amylase and W. anomalus HN006 supplementation on the biochemical parameters of lily rice wine were evaluated. The optimum quality of the wine, in terms of ethanol and residual sugar content, acidity levels and aroma, was obtained with 5% (w/v) solid residue addition, and supplementation with 10 U/g fungal α-amylase and 2% (v/v) W. anomalus inoculum on the 4th day of fermentation. Volatile compound profiles, the total amount of amino acids and the sensory characteristics of the lily rice wines produced by the two fermentation processes were also evaluated and compared. The lily rice wine obtained from our optimized experimental technology produced higher amounts of some esters, free fatty acids, alcohols, aldehydes, ketones, alkenes, volatile phenol and thiazole, in addition to higher total amino acid content and sensory scores compared to the traditionally brewed wine. Our process resulted in an intensification and improvement of lily rice wine aroma.
Collapse
|
22
|
Shoubao Y, Xiangsong C, Jiaquan G. Bacterial and fungal diversity in the traditional Chinese strong flavour liquor Daqu. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Shoubao
- School of Life Science; Huainan Normal University; Huainan Anhui 232001 People's Republic of China
- Liquor Making Biological Technology and Application of key laboratory of Sichuan Province; Zigong Sichuan Province 643000 People's Republic of China
- Anhui Yingjia Group Co., Ltd.; Luan Anhui Province 237271 People's Republic of China
- Key Laboratory of Ion Beam Bio-engineering of Institute of Plasma Physics; Chinese Academy of Sciences; Hefei 230031 People's Republic of China
- Key laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes; Huainan Normal University; Huainan Anhui 232001 People's Republic of China
| | - Chen Xiangsong
- Key Laboratory of Ion Beam Bio-engineering of Institute of Plasma Physics; Chinese Academy of Sciences; Hefei 230031 People's Republic of China
| | - Guang Jiaquan
- Anhui Yingjia Group Co., Ltd.; Luan Anhui Province 237271 People's Republic of China
| |
Collapse
|
23
|
Yan S, Dong D. Improvement of caproic acid production in a Clostridium kluyveri H068 and Methanogen 166 co-culture fermentation system. AMB Express 2018; 8:175. [PMID: 30361817 PMCID: PMC6202304 DOI: 10.1186/s13568-018-0705-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/19/2018] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to develop a bioprocess capable of producing caproic acid using a binary fermentation system consisting of Clostridium kluyveri H068 and Methanogen 166 which could then be applied to the brewing of Chinese strong flavor liquor. We initially explored the mechanism by which the Methanogen 166 strain facilitates caproic acid accumulation, revealing its ability to convert accumulated H2 that is produced by C. kluyveri H068 into methane, thereby eliminating the hydrogen-mediated feedback inhibition that normally constrains C. kluyveri H068 and thus enhancing caproic acid production. In addition, laboratory experiments were conducted to optimize this binary fermentation system, allowing us to determine that the optimum conditions for caproic acid production are a mixed inoculum size of 10% with a C. kluyveri H588/Methanogen 166 inoculation ratio of 2:1 (v/v), a sodium acetate concentration of 20 g/L, a 4% ethanol content (v/v), and a yeast extract concentration of 10 g/L. We further scaled this optimized condition up to use in a 1000 L fermenter and the obtained caproic acid broth was subjected to pit-entry fermentation. Our results demonstrated that this pit-entry fermentation approach was an efficient means of improving the quality of Chinese strong flavor liquor.
Collapse
|
24
|
Diversity and dynamic succession of microorganisms during Daqu
preparation for Luzhou-
flavour liquor using second-generation sequencing technology. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.528] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Fan G, Sun B, Fu Z, Xia Y, Huang M, Xu C, Li X. Analysis of Physicochemical Indices, Volatile Flavor Components, and Microbial Community of a Light-Flavor Daqu. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1080/03610470.2018.1424402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| | - Zhilei Fu
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yanqiu Xia
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Mingquan Huang
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chunyan Xu
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
26
|
Huang Y, Yi Z, Jin Y, Huang M, He K, Liu D, Luo H, Zhao D, He H, Fang Y, Zhao H. Metatranscriptomics Reveals the Functions and Enzyme Profiles of the Microbial Community in Chinese Nong-Flavor Liquor Starter. Front Microbiol 2017; 8:1747. [PMID: 28955318 PMCID: PMC5600954 DOI: 10.3389/fmicb.2017.01747] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/28/2017] [Indexed: 11/16/2022] Open
Abstract
Chinese liquor is one of the world's best-known distilled spirits and is the largest spirit category by sales. The unique and traditional solid-state fermentation technology used to produce Chinese liquor has been in continuous use for several thousand years. The diverse and dynamic microbial community in a liquor starter is the main contributor to liquor brewing. However, little is known about the ecological distribution and functional importance of these community members. In this study, metatranscriptomics was used to comprehensively explore the active microbial community members and key transcripts with significant functions in the liquor starter production process. Fungi were found to be the most abundant and active community members. A total of 932 carbohydrate-active enzymes, including highly expressed auxiliary activity family 9 and 10 proteins, were identified at 62°C under aerobic conditions. Some potential thermostable enzymes were identified at 50, 62, and 25°C (mature stage). Increased content and overexpressed key enzymes involved in glycolysis and starch, pyruvate and ethanol metabolism were detected at 50 and 62°C. The key enzymes of the citrate cycle were up-regulated at 62°C, and their abundant derivatives are crucial for flavor generation. Here, the metabolism and functional enzymes of the active microbial communities in NF liquor starter were studied, which could pave the way to initiate improvements in liquor quality and to discover microbes that produce novel enzymes or high-value added products.
Collapse
Affiliation(s)
- Yuhong Huang
- Meat-Processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu UniversityChengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China.,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of SciencesChengdu, China
| | - Zhuolin Yi
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China.,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of SciencesChengdu, China
| | - Yanling Jin
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China.,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of SciencesChengdu, China
| | - Mengjun Huang
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China.,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of SciencesChengdu, China
| | - Kaize He
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China.,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of SciencesChengdu, China
| | - Dayu Liu
- Meat-Processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu UniversityChengdu, China
| | - Huibo Luo
- Liquor Making Bio-Technology and Application of Key Laboratory of Sichuan Province, Bioengineering College, Sichuan University of Science and EngineeringZigong, China
| | | | - Hui He
- Department of Liquor Making Engineering, Moutai CollegeRenhuai, China
| | - Yang Fang
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China.,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of SciencesChengdu, China
| | - Hai Zhao
- Meat-Processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu UniversityChengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengdu, China.,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of SciencesChengdu, China
| |
Collapse
|
27
|
Bacillus licheniformis affects the microbial community and metabolic profile in the spontaneous fermentation of Daqu starter for Chinese liquor making. Int J Food Microbiol 2017; 250:59-67. [DOI: 10.1016/j.ijfoodmicro.2017.03.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/02/2017] [Accepted: 03/13/2017] [Indexed: 11/23/2022]
|
28
|
Wang X, Du H, Xu Y. Source tracking of prokaryotic communities in fermented grain of Chinese strong-flavor liquor. Int J Food Microbiol 2017; 244:27-35. [DOI: 10.1016/j.ijfoodmicro.2016.12.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 10/20/2022]
|
29
|
Han S, Zhang W, Li P, Li X, Liu J, Xu B, Luo D. Characterization of Aromatic Liquor by Gas Chromatography and Principal Component Analysis. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1196365] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sihai Han
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Weiwei Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Peiyan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xuan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Jianxue Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Baocheng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
30
|
Zhu W, Ren C, Nie Y, Xu Y. Quantification of ochratoxin A in Chinese liquors by a new solid-phase extraction clean-up combined with HPLC-FLD method. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.11.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|