1
|
Shoubao Y, Jie Y, TingTing S, Jiaquan G, Cuie S. Yeast diversity in pit mud and related volatile compounds in fermented grains of chinese strong-flavour liquor. AMB Express 2023; 13:56. [PMID: 37291367 DOI: 10.1186/s13568-023-01562-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Chinese strong-flavour liquor is produced via a traditional solid-state fermentation strategy facilitated by live microorganisms in pit mud-based cellars. For the present analysis, pit mud samples from different spatial locations within fermentation cellars were collected, and the yeast communities therein were assessed via culture-based and denaturing gradient gel electrophoresis (DGGE) approaches. These analyses revealed significant differences in the composition of yeast communities present in different layers of pit mud. In total, 29 different yeast species were detected, and principal component analyses revealed clear differences in microbial diversity in pit mud samples taken from different cellar locations. Culture-dependent strategies similarly detected 20 different yeast species in these samples. However, while Geotrichum silvicola, Torulaspora delbrueckii, Hanseniaspora uvarum, Saturnispora silvae, Issatchenkia orientalis, Candida mucifera, Kazachstania barnettii, Cyberlindnera jadinii, Hanseniaspora spp., Alternaria tenuissima, Cryptococcus laurentii, Metschnikowia spp., and Rhodotorula dairenensis were detected via a PCR-DGGE approach, they were not detectable in culture-dependent analyses. In contrast, culture-based approaches led to the identification of Schizosaccharomyces pombe and Debaryomyces hansenii in these pit mud samples, whereas they were not detected using DGGE fingerprints profiles. An additional HS-SPME-GC-MS-based analysis of the volatile compounds present in fermented grains samples led to the identification of 66 such compounds, with the highest levels of volatile acids, esters, and alcohols being detected in fermented grains from lower layer samples. A canonical correspondence analysis (CCA) suggested they were significant correlations between pit mud yeast communities and associated volatile compounds in fermented grains.
Collapse
Affiliation(s)
- Yan Shoubao
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
- Anhui Yingjia Group Co., Ltd, Luan, 237271, China
| | - Yang Jie
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
| | - Shen TingTing
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China
| | | | - Shi Cuie
- Department of biology and food engineering, Huainan Normal University, Huainan, 230038, China.
- Brewing Industry Microbial Resource Development and Application Engineering Research Center in Anhui Province, Huainan Normal University, Huainan, 230038, China.
| |
Collapse
|
2
|
Cheng W, Chen X, Guo Y, Zhou D, Zeng H, Fu H. The microbial diversity and flavour metabolism of Chinese strong flavour Baijiu: a review. JOURNAL OF THE INSTITUTE OF BREWING 2023. [DOI: 10.58430/jib.v129i1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Strong flavour Baijiu is widely consumed in China and is produced by the fermentation of grains using microbial starters. However, a comprehensive understanding of the diversity and metabolic characteristics of microbial communities involved in the solid-state fermentation of Baijiu is important for determining the relationship between microbial composition, flavour metabolism and understanding Baijiu fermentation conditions. Although studies have examined the metabolic pathways and impact of major processes on flavour compounds in strong flavour Baijiu, aspects of the fermentation process remain unexplored. In this review, methods are discussed for the optimisation of microbial diversity in strong flavour Baijiu and associated effects on the flavour of Baijiu. Recent studies are reviewed on starters (Daqu), fermented grains (Jiupei), and pit mud together with the effects of microbial composition on the quality of strong flavour Baijiu. The challenges of Baijiu research and production are discussed, including the role of the microbial diversity of Daqu and Jiupei in the flavour composition of strong flavour Baijiu. This review contributes to the current understanding of processing strong flavour Baijiu and serves as a reference for screening flavour related microorganisms, which is valuable for improving the quality of strong flavour Baijiu.
Collapse
|
3
|
Fang S, Wang C, Yan J. Comparing the differences of prokaryotic microbial community between pit walls and bottom from Chinese liquor revealed by 16S rRNA gene sequencing. Open Life Sci 2023; 18:20220571. [PMID: 36852403 PMCID: PMC9962418 DOI: 10.1515/biol-2022-0571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/25/2022] [Accepted: 01/14/2023] [Indexed: 02/25/2023] Open
Abstract
This study aims to explore the prokaryotic microbial community structures and diversity in pit mud from different depths, and provide a theoretical basis for the liquor production and further study of pit mud. The fermented pit muds of strong-flavor liquor from Yun distillery were taken as samples. The high-throughput sequencing approach, followed by bioinformatics analyses, was used to compare the differences in the prokaryotic microbial community between pit walls and bottom represented by samples. A total of 31 bacteria phyla and 2 archaea phyla were detected. The dominant phyla in YJ-S, YJ-Z, and YJ-X (sample name) were Proteobacteria and Firmicutes, while the dominant genera in them were Acinetobacter, Aminobacterium, and Lactobacillus. YJ-Z and YJ-X were the closest in species diversity. In species richness analysis, YJ-X was the highest, followed by YJ-Z, and YJ-S was the lowest; in species uniformity analysis, YJ-S was the highest, followed by YJ-Z, and YJ-X was the lowest. The function predicted by 16S rRNA genome showed that prokaryotic microbial function in pit mud was mainly concentrated in "Carbohydrate transport and metabolism" and "Amino acid transport and metabolism." Significant differences in prokaryotic microbial community and gene function prediction between pit walls and bottom were found in YJ-S, YJ-Z, and YJ-X (p < 0.05).
Collapse
Affiliation(s)
- Shu Fang
- School of Biological and Environmental Engineering, Chaohu University, Hefei 230000, China
| | - Chuanxiang Wang
- Quality and Technology Department, Anhui Yun Distillery Group Co., Ltd, Ma’anshan 243000, China
| | - Juan Yan
- School of Biological and Environmental Engineering, Chaohu University, Hefei 230000, China
| |
Collapse
|
4
|
A new method for screening and culture of Clostridium from pit mud under non-anaerobic conditions. J Microbiol Methods 2022; 200:106559. [PMID: 36007702 DOI: 10.1016/j.mimet.2022.106559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022]
Abstract
Strong-flavor Baijiu (SFB) is produced in complex fermentation in pits under ground. Clostridium producing hexanoic acid plays a key role in the flavor formation of SFB. The screening and culture for Clostridium are very difficult because of its strict anaerobic characteristics. In this study, electric field assisted screening (EFAS) was used to screen Clostridium from pit mud, and electric culture (EC) was used to cultivate Clostridium under non-anaerobic conditions. A strain with a high yield of hexanoic acid was screened and named as Clostridium sp. EFAS6. Under non-anaerobic conditions, it grew rapidly only near the cathode end in the EFAS device because of the low oxidation-reduction potential of that electrode. In the experiment of high-density culture in the EC device, the cell concentration reached 106-107. After energy consumption was calculated, the optimal loading voltage was found to be 10 V. In the application, the broth of Clostridium sp. EFAS6 increased the content of ethyl hexanoic in SFB. Under non-anaerobic conditions, the anaerobe was screened by EFAS and cultivated in high density by EC. The EFAS and EC could also be used for the screening and culture of other anaerobes under non-anaerobic conditions.
Collapse
|
5
|
Liu Y, Sun M, Hou P, Wang W, Shen X, Zhang L, Han S, Pan C. Analysis of microbial community structure and volatile compounds in pit mud used for manufacturing Taorong-type Baijiu based on high-throughput sequencing. Sci Rep 2022; 12:7347. [PMID: 35513386 PMCID: PMC9072327 DOI: 10.1038/s41598-022-10412-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
In this study, the pit mud used in manufacturing Taorong-type Baijiu was collected from the upper, middle, lower and bottom layers of pits at Henan Yangshao Liquor Co., LTD. High-throughput sequencing (HTS) technology was used to analyze the microbial community structure of the pit mud. In addition, the volatile compounds in the pit mud were subjected to preliminary qualitative analysis through headspace-solid phase microextraction and gas chromatography-mass spectrometry (GC-MS). The HTS results demonstrated that there were 5, 3, 5 and 5 dominant bacterial phyla (including 11, 11, 9 and 8 dominant bacterial genera) and 3, 3, 3 and 3 dominant fungal phyla (including 4, 7, 7 and 5 dominant fungal genera) in the pit mud from the F-S (upper), G-Z (middle), H-X (lower) and I-D (bottom) layers, respectively. In the qualitative analysis of the volatile compounds, a total of 77types of volatile compounds were detected in the pit mud, including 46, 45, 39 and 49 types in the pit mud from layers F-S, G-Z, H-X and I-D, respectively. Esters and acids were the two main components of the pit mud. The correlation between the microorganisms present and the main volatile compounds in the pit mud was analyzed. Lentimicrobium, Syner-01 and Blvii28_wastewater-sludge groups were found for the first time in pit mud used for manufacturing Taorong-type Baijiu. The findings of this study could provide a theoretical foundation for improving the quality of pit mud and the flavor of Taorong-type Baijiu.
Collapse
Affiliation(s)
- Yanbo Liu
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Postdoctoral Programme, Henan Yangshao Distillery Co., Ltd., Mianchi, 472400, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Mengxiao Sun
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Pei Hou
- School of Food and Bio-Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, China
| | - Wenya Wang
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Xiangkun Shen
- Henan Food Industry Science Research Institute Co., Ltd., Zhengzhou, 450003, China
| | - Lixin Zhang
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Suna Han
- Postdoctoral Programme, Henan Yangshao Distillery Co., Ltd., Mianchi, 472400, China
| | - Chunmei Pan
- College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
- Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
- Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Disharoon A, Boyles R, Jordan K, Kresovich S. Exploring diverse sorghum (
Sorghum bicolor
(L.) Moench) accessions for malt amylase activity. JOURNAL OF THE INSTITUTE OF BREWING 2020. [DOI: 10.1002/jib.628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Andrew Disharoon
- Department of Plant and Environmental Sciences Clemson University South Carolina USA
| | - Richard Boyles
- Department of Plant and Environmental Sciences Clemson University South Carolina USA
- Advanced Plant Technology Clemson University Clemson SC USA
| | | | - Stephen Kresovich
- Department of Plant and Environmental Sciences Clemson University South Carolina USA
- Advanced Plant Technology Clemson University Clemson SC USA
| |
Collapse
|
7
|
Xu J, Sun L, Xing X, Sun Z, Gu H, Lu X, Li Z, Ren Q. Culturing Bacteria From Fermentation Pit Muds of Baijiu With Culturomics and Amplicon-Based Metagenomic Approaches. Front Microbiol 2020; 11:1223. [PMID: 32714285 PMCID: PMC7344326 DOI: 10.3389/fmicb.2020.01223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 05/14/2020] [Indexed: 12/22/2022] Open
Abstract
The Baijiu-making microbiota has an important role in the alcohol production, flavor, and character of Baijiu. 16S rRNA gene sequencing revolutionized the understanding of Baijiu-making microbiota. In this study, nine phyla, 23 classes, 49 orders, 99 families, and 201 genera were detected in pit muds (PMs) by 16S rRNA gene sequencing. Firmicutes and Bacteroidetes predominated (>99%). At the order level, Clostridiales, Bacteroidales, and Bacillales predominated (>92%). At the genus level, Hydrogenispora, Petrimonas, Proteiniphilum, and Sedimentibacter predominated. The pure culture of Baijiu-making prokaryotes was essential to elucidating the role of these microbes in the fermentation of Baijiu. According to the theory of microbial culturomics, a culturing approach with multiple culture conditions was adopted, combining 16S rRNA gene sequencing. We identified 215 prokaryotic strains, which were assigned to 66 species, 41 genera, four phyla, and 19 potential new species. Gas conditions were key factors in culturomics. In addition, culturomics significantly increased the number of species isolated from the fermentation PM compared with previous reports. With culturomics, the diversity spectrum of culturable bacteria in the PM was increased 273.33% at the genus level. This study confirms the complementary role of culturomics in the exploration of complex microbiota.
Collapse
Affiliation(s)
- Jialiang Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Leping Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xuan Xing
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Zhanbin Sun
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Haoyue Gu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xin Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qing Ren
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
8
|
Gao Z, Wu Z, Zhang W. Effect of Pit Mud on Bacterial Community and Aroma Components in Yellow Water and Their Changes during the Fermentation of Chinese Strong-Flavor Liquor. Foods 2020; 9:foods9030372. [PMID: 32210161 PMCID: PMC7143002 DOI: 10.3390/foods9030372] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 01/03/2023] Open
Abstract
As the main by-product of Chinese strong-flavor liquor, yellow water plays an important role in the formation of flavor components. Yellow water from different fermentation periods (30th day, 45th day, 60th day) was selected to analyze the aroma components by Headspace solid phase micro-extraction Gas Chromatography–Mass Spectrometry, and the microorganism community was evaluated by high-throughput sequencing technology and bioinformatics analysis of DNA. As the fermentation time was prolonged, the main flavor components significantly increased, and the amount of the common microbial population between yellow water and pit mud increased gradually. Among the common microorganisms, Lactobacillus accounted for the largest proportion, at about 56.96%. The microbes in the yellow water mainly belonged to Firmicutes. The abundance of Bacilli (the main bacteria) gradually decreased with time, at 87.60% at the 30th day down to 68.87% at the 60th day, but Clostridia gradually increased from 10.29% to 27.48%. At the genus level, some microbes increased significantly from the 30th day to 60th day, such as Caproiciproducens, which increased from 2.65% to 6.30%, and Sedimentibacter, increasing from 0.47% to 2.49%. RDA analysis indicated that the main aroma components were positively correlated with Clostridia and negatively correlated with Bacilli.
Collapse
Affiliation(s)
- Zhanzheng Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.G.); (Z.W.)
- Sichuan Shuijingfang Co., Ltd., Chengdu 610037, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.G.); (Z.W.)
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; (Z.G.); (Z.W.)
- Correspondence: ; Tel.: +86-028-8540-1785; Fax: +86-028-3760-0278
| |
Collapse
|