1
|
Wang P, Hu L, Chen Y, Zhou D, Zhu S, Zhang T, Cen Z, He Q, Wu B, Huang X. Enhancing newborn screening sensitivity and specificity for missed NICCD using selected amino acids and acylcarnitines. Orphanet J Rare Dis 2025; 20:17. [PMID: 39799340 PMCID: PMC11724517 DOI: 10.1186/s13023-025-03532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025] Open
Abstract
PURPOSE To enhance the detection rate of Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD) through newborn screening (NBS), we analyzed the metabolic profiles of missed patients and proposed a more reliable method for early diagnosis. METHODS In this retrospective study, NICCD patients were classified into "Newborn Screening" (64 individuals) and "Missed Screening" (52 individuals) groups. Metabolic profiles were analyzed using the non-derivatized MS/MS Kit, and genetic mutations were identified via next-generation sequencing and confirmed by Sanger sequencing. Receiver Operating Characteristic (ROC) analysis evaluated the predictive value of amino acids and acylcarnitines in dried blood spots (DBS) for identifying missed patients including 40 missed patients and 17,269 healthy individuals, with additional validation using 12 missed patients and 454 healthy controls. RESULTS The age of diagnosis was significantly higher in the "Missed Screening" group compared to the "Newborn Screening" group (74.50 vs. 18.00 days, P < 0.001). ROC analysis revealed that citrulline had excellent diagnostic accuracy for missed patients, with an AUC of 0.970 and a cut-off value of 17.57 µmol/L. Additionally, glycine, phenylalanine, ornithine, and C8 were significant markers, each with an AUC greater than 0.70. A combination of these markers achieved an AUC of 0.996 with a cut-off value of 0.00195. Validation demonstrated a true positive rate of 91.67% and a true negative rate of 96.48%. Common SLC25A13 mutations in both groups were c.852_855del, IVS16ins3kb, and c.615 + 5G > A. CONCLUSIONS Combining multiple metabolic markers during NBS significantly improves sensitivity and specificity for detecting missed NICCD cases. However, the relationship between genetic mutations and missed cases remains unclear.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yuhe Chen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Duo Zhou
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shasha Zhu
- Department of Pediatric Health, Taizhou Women and Children's Hospital, Taizhou, 318000, Zhejiang, China
| | - Ting Zhang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Ziyan Cen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Qimin He
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, China.
| | - Benqing Wu
- Children's Medical Center, University of the Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518106, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
2
|
Tiwari V, Jin B, Sun O, Lopez Gonzalez ED, Chen MH, Wu X, Shah H, Zhang A, Herman MA, Spracklen CN, Goodman RP, Brenner C. Glycerol-3-phosphate activates ChREBP, FGF21 transcription and lipogenesis in Citrin Deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630525. [PMID: 39763913 PMCID: PMC11703153 DOI: 10.1101/2024.12.27.630525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Citrin Deficiency (CD) is caused by inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. We discovered that SLC25A13 loss causes accumulation of glycerol-3-phosphate (G3P), which activates carbohydrate response element binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol, and to transcribe key genes of de novo lipogenesis. Mouse and human data establish G3P-ChREBP as a new mechanistic component of the Randle Cycle that contributes to metabolic dysfunction-associated steatotic liver disease (MASLD) and forms part of a system that communicates metabolic states from liver to brain in a manner that alters food and alcohol choices. The data provide a framework for understanding FGF21 induction in varied conditions, suggest ways to develop FGF21-inducing drugs, and drug candidates for both lean MASLD and support of urea cycle function in CD.
Collapse
Affiliation(s)
- Vinod Tiwari
- Beckman Research Institute of City of Hope; Duarte, USA
| | - Byungchang Jin
- Liver Center and Endocrine Unit, Massachusetts General Hospital; Boston, USA
| | - Olivia Sun
- Beckman Research Institute of City of Hope; Duarte, USA
| | | | | | - Xiwei Wu
- Beckman Research Institute of City of Hope; Duarte, USA
| | - Hardik Shah
- Comprehensive Cancer Center, University of Chicago; Chicago, USA
| | - Andrew Zhang
- Liver Center and Endocrine Unit, Massachusetts General Hospital; Boston, USA
| | | | | | - Russell P. Goodman
- Liver Center and Endocrine Unit, Massachusetts General Hospital; Boston, USA
| | | |
Collapse
|
3
|
Kido J, Häberle J, Tanaka T, Nagao M, Wada Y, Numakura C, Bo R, Nyuzuki H, Dateki S, Maruyama S, Murayama K, Yoshida S, Nakamura K. Improved sensitivity and specificity for citrin deficiency using selected amino acids and acylcarnitines in the newborn screening. J Inherit Metab Dis 2024; 47:1134-1143. [PMID: 37681292 DOI: 10.1002/jimd.12673] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in the SLC25A13 gene. Intrahepatic cholestasis and various metabolic abnormalities, including hypoglycemia, galactosemia, citrullinemia, and hyperammonemia may be present in neonates or infants in the "neonatal intrahepatic cholestasis caused by citrin deficiency" (NICCD) form of the disease. Because at present, newborn screening (NBS) for citrin deficiency using citrulline levels in dried blood spots (DBS) can only detect some of the patients, we tried to develop a new evaluation system to more reliably detect newborns with citrin deficiency utilizing parameters already in place in present NBS methods. To achieve this goal, we re-analyzed NBS profiles of amino acids and acylcarnitines in 96 NICCD patients, who were diagnosed through selective screening or positive family history. Hereby, we identified the combined evaluation of arginine (Arg), citrulline (Cit), isoleucine+leucine (Ile + Leu), tyrosine (Tyr), free carnitine (C0) / glutarylcarnitine (C5-DC) ratio in DBS as potentially sensitive to diagnose citrin deficiency in pre-symptomatic newborns. In particular, a scoring system using threshold levels for Arg (≥9 μmol/L), Cit (≥ 39 μmol/L), Ile + Leu (≥ 99 μmol/L), Tyr (≥ 96 μmol/L) and C0/C5-DC ratio (≥327) was significantly effective to detect newborns who later developed NICCD, and could thus be implemented in existing NBS programs at no extra analytical costs whenever citrin deficiency is considered to become a novel target disease.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Toju Tanaka
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Masayoshi Nagao
- Department of Pediatrics, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Chikahiko Numakura
- Department of Pediatrics, Yamagata University School of Medicine, Yamagata, Japan
| | - Ryosuke Bo
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiromi Nyuzuki
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinsuke Maruyama
- Department of Pediatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kei Murayama
- Department of Metabolism, Center for Medical Genetics, Chiba Children's Hospital, Chiba, Japan
| | | | - Kimitoshi Nakamura
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
| |
Collapse
|
4
|
Häberle J, Siri B, Dionisi‐Vici C. Quo vadis ureagenesis disorders? A journey from 90 years ago into the future. J Inherit Metab Dis 2024; 47:1120-1128. [PMID: 38837457 PMCID: PMC11586591 DOI: 10.1002/jimd.12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
The pathway of ammonia disposal in the mammalian organism has been described in 1932 as a metabolic cycle present in the liver in different compartments. In 1958, the first human disorder affecting this pathway was described as a genetic condition leading to cognitive impairment and constant abnormalities of amino acid metabolism. Since then, defects in all enzymes and transporters of the urea cycle have been described, referring to them as primary urea cycle disorders causing primary hyperammonemia. In addition, there is a still increasing list of conditions that impact on the function of the urea cycle by various mechanisms, hereby leading to secondary hyperammonemia. Despite great advances in understanding the molecular background and the biochemical specificities of both primary and secondary hyperammonemias, there remain many open questions: we do not fully understand the pathophysiology in many of the conditions; we do not always understand the highly variable clinical course of affected patients; we clearly appreciate the need for novel and improved diagnostic and therapeutic approaches. This study does look back to the beginning of the urea cycle (hi)story, briefly describes the journey through past decades, hereby illustrating advancements and knowledge gaps, and gives examples for the extremely broad perspective imminent to some of the defects of ureagenesis and allied conditions.
Collapse
Affiliation(s)
- Johannes Häberle
- Division of Metabolism and Children's Research CenterUniversity Children's Hospital Zurich, University of ZurichZurichSwitzerland
| | - Barbara Siri
- Division of Metabolic Diseases and HepatologyBambino Gesù Children's Hospital IRCCSRomeItaly
| | - Carlo Dionisi‐Vici
- Division of Metabolic Diseases and HepatologyBambino Gesù Children's Hospital IRCCSRomeItaly
| |
Collapse
|
5
|
Kido J, Makris G, Santra S, Häberle J. Clinical landscape of citrin deficiency: A global perspective on a multifaceted condition. J Inherit Metab Dis 2024; 47:1144-1156. [PMID: 38503330 PMCID: PMC11586594 DOI: 10.1002/jimd.12722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/21/2024]
Abstract
Citrin deficiency is an autosomal recessive disorder caused by a defect of citrin resulting from mutations in SLC25A13. The clinical manifestation is very variable and comprises three types: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD: OMIM 605814), post-NICCD including failure to thrive and dyslipidemia caused by citrin deficiency, and adult-onset type II citrullinemia (CTLN2: OMIM 603471). Frequently, NICCD can run with a mild clinical course and manifestations may resolve in the post-NICCD. However, a subset of patients may develop CTLN2 when they become more than 18 years old, and this condition is potentially life-threatening. Since a combination of diet with low-carbohydrate and high-fat content supplemented with medium-chain triglycerides is expected to ameliorate most manifestations and to prevent the progression to CTLN2, early detection and intervention are important and may improve long-term outcome in patients. Moreover, infusion of high sugar solution and/or glycerol may be life-threatening in patients with citrin deficiency, particularly CTLN2. The disease is highly prevalent in East Asian countries but is more and more recognized as a global entity. Since newborn screening for citrin deficiency has only been introduced in a few countries, the diagnosis still mainly relies on clinical suspicion followed by genetic testing or selective metabolic screening. This paper aims at describing (1) the different stages of the disease focusing on clinical aspects; (2) the current published clinical situation in East Asia, Europe, and North America; (3) current efforts in increasing awareness by establishing management guidelines and patient registries, hereby illustrating the ongoing development of a global network for this rare disease.
Collapse
Affiliation(s)
- Jun Kido
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
- Department of Pediatrics, Faculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of PediatricsKumamoto University HospitalKumamotoJapan
| | - Georgios Makris
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
| | - Saikat Santra
- Department of Clinical Inherited Metabolic DisordersBirmingham Children's HospitalBirminghamUK
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research CentreZurichSwitzerland
| |
Collapse
|
6
|
Yin X, Lin Y, Zhang T, Miao H, Hu L, Hu Z, Zhou D, Wu B, Huang X. Rapid detection of common variants and deletions of CYP21A2 using MALDI-TOF MS. Eur J Med Genet 2024; 69:104950. [PMID: 38830573 DOI: 10.1016/j.ejmg.2024.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Newborn screening (NBS) for congenital adrenal hyperplasia (CAH) based on hormonal testing is successfully implemented in many countries. However, this method cannot detect non-classic CAH and has high false positive rates. We have developed a novel MALDI-TOF MS assay that can identify common variants and deletions of CYP21A2 in the Chinese population. Thirty-seven clinical patients with CAH confirmed by Sanger sequencing and MLPA analysis were detected by MALDI-TOF MS assay. Two CYP21A2 variants were detected in 30 patients and one CYP21A2 variant was detected in 7 patients. The MALDI-TOF MS assay detected 67 mutant alleles in 37 patients with a detection rate of 90.5%. Sanger sequencing revealed that three variants in seven patients were not included in the designed panel. Eleven distinct CYP21A2 variants were identified, including five missense variants, two nonsense variants, two large gene deletions, one splice variant, and one frameshift variant. The most frequent variant was c.293-13C > G (37.84%), followed by c.518T > A (21.62%) and exon 1-7 deletion (17.57%). The high-throughput MALDI-TOF MS assay that can simultaneously detect common variants and deletions of CYP21A2. This assay can be used for population-based genetic screening and rapid detection of suspected patients, and is expected to be a valuable complement to biochemical-based testing for the detection of CAH.
Collapse
Affiliation(s)
- Xiaoshan Yin
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China; Department of Clinical Psychology, School of Health in Social Science, The University of Edinburg, Edinburg, United Kingdom
| | - Yiming Lin
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China; Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, China
| | - Ting Zhang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haixia Miao
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dou Zhou
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Benqing Wu
- Children's Medical Center, University of Chinese Academy of Science - Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
7
|
Wang D, Zhang J, Yang R, Zhang D, Wang M, Yu C, Yang J, Huang W, Liu S, Tang S, He X. Disease spectrum, prevalence, genetic characteristics of inborn errors of metabolism in 21,840 hospitalized infants in Chongqing, China, 2017-2022. Front Genet 2024; 15:1395988. [PMID: 38863445 PMCID: PMC11165094 DOI: 10.3389/fgene.2024.1395988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Inborn errors of metabolism (IEMs) are uncommon. Although some studies have explored the distribution and characteristics of IEMs in newborns, the impact of these disorders on hospitalized newborns remains unclear. In this study, we gathered data from 21,840 newborn patients admitted for various medical conditions at the Children's Hospital of Chongqing Medical University from January 2017 and December 2022. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS/MS), and genetic analysis were used to elucidate the disease spectrum, incidence rate, and genetic characteristics of IEMs in hospitalized newborns. The results revealed that the incidence of IEMs in hospitalized newborns was 1/377 (58/21,840), with a higher incidence in full-term infants (1/428) than in premature infants (1/3,120). Among the diagnosed genetic metabolic diseases, organic acid metabolism disorders (1/662), amino acid metabolism disorders (1/950), and fatty acid oxidation disorders (1/10,920) were the most prevalent. Methylmalonic acidemia (MMA), especially the isolated form, emerged as the most common IEM, while neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) and ornithine transcarbamylase deficiency (OTCD) were prevalent in premature infants. Of the 58 confirmed cases of IEMs, 72 variants were identified, of which 31.94% (23/72) had not been reported previously. This study contributes to understanding the incidence and clinical features of IEMs in hospitalized newborns, offering more efficient strategies for screening and diagnosing these disorders.
Collapse
Affiliation(s)
- Dongjuan Wang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Zhang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Yang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dayong Zhang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Wang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Chaowen Yu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jingli Yang
- Department of Neonatology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxia Huang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Liu
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Shi Tang
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan He
- Center for Clinical Molecular Medicine, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Therrell BL, Padilla CD, Borrajo GJC, Khneisser I, Schielen PCJI, Knight-Madden J, Malherbe HL, Kase M. Current Status of Newborn Bloodspot Screening Worldwide 2024: A Comprehensive Review of Recent Activities (2020-2023). Int J Neonatal Screen 2024; 10:38. [PMID: 38920845 PMCID: PMC11203842 DOI: 10.3390/ijns10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 06/27/2024] Open
Abstract
Newborn bloodspot screening (NBS) began in the early 1960s based on the work of Dr. Robert "Bob" Guthrie in Buffalo, NY, USA. His development of a screening test for phenylketonuria on blood absorbed onto a special filter paper and transported to a remote testing laboratory began it all. Expansion of NBS to large numbers of asymptomatic congenital conditions flourishes in many settings while it has not yet been realized in others. The need for NBS as an efficient and effective public health prevention strategy that contributes to lowered morbidity and mortality wherever it is sustained is well known in the medical field but not necessarily by political policy makers. Acknowledging the value of national NBS reports published in 2007, the authors collaborated to create a worldwide NBS update in 2015. In a continuing attempt to review the progress of NBS globally, and to move towards a more harmonized and equitable screening system, we have updated our 2015 report with information available at the beginning of 2024. Reports on sub-Saharan Africa and the Caribbean, missing in 2015, have been included. Tables popular in the previous report have been updated with an eye towards harmonized comparisons. To emphasize areas needing attention globally, we have used regional tables containing similar listings of conditions screened, numbers of screening laboratories, and time at which specimen collection is recommended. Discussions are limited to bloodspot screening.
Collapse
Affiliation(s)
- Bradford L. Therrell
- Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
- National Newborn Screening and Global Resource Center, Austin, TX 78759, USA
| | - Carmencita D. Padilla
- Department of Pediatrics, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines;
| | - Gustavo J. C. Borrajo
- Detección de Errores Congénitos—Fundación Bioquímica Argentina, La Plata 1908, Argentina;
| | - Issam Khneisser
- Jacques LOISELET Genetic and Genomic Medical Center, Faculty of Medicine, Saint Joseph University, Beirut 1104 2020, Lebanon;
| | - Peter C. J. I. Schielen
- Office of the International Society for Neonatal Screening, Reigerskamp 273, 3607 HP Maarssen, The Netherlands;
| | - Jennifer Knight-Madden
- Caribbean Institute for Health Research—Sickle Cell Unit, The University of the West Indies, Mona, Kingston 7, Jamaica;
| | - Helen L. Malherbe
- Centre for Human Metabolomics, North-West University, Potchefstroom 2531, South Africa;
- Rare Diseases South Africa NPC, The Station Office, Bryanston, Sandton 2021, South Africa
| | - Marika Kase
- Strategic Initiatives Reproductive Health, Revvity, PL10, 10101 Turku, Finland;
| |
Collapse
|
9
|
Shen G, Liu J, Yang H, Xie N, Yang Y. mRNA therapies: Pioneering a new era in rare genetic disease treatment. J Control Release 2024; 369:696-721. [PMID: 38580137 DOI: 10.1016/j.jconrel.2024.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/16/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.
Collapse
Affiliation(s)
- Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jian Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanmei Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Chan TCH, Mak CM, Yeung MCW, Law ECY, Cheung J, Wong TK, Cheng VWS, Lee JKH, Wong JCL, Fung CW, Belaramani KM, Kwok AMK, Tsang KY. Harnessing Next-Generation Sequencing as a Timely and Accurate Second-Tier Screening Test for Newborn Screening of Inborn Errors of Metabolism. Int J Neonatal Screen 2024; 10:19. [PMID: 38535123 PMCID: PMC10971432 DOI: 10.3390/ijns10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 11/12/2024] Open
Abstract
In this study, we evaluated the implementation of a second-tier genetic screening test using an amplicon-based next-generation sequencing (NGS) panel in our laboratory during the period of 1 September 2021 to 31 August 2022 for the newborn screening (NBS) of six conditions for inborn errors of metabolism: citrullinemia type II (MIM #605814), systemic primary carnitine deficiency (MIM #212140), glutaric acidemia type I (MIM #231670), beta-ketothiolase deficiency (#203750), holocarboxylase synthetase deficiency (MIM #253270) and 3-hydroxy-3-methylglutaryl-CoA lyase deficiency (MIM # 246450). The custom-designed NGS panel can detect sequence variants in the relevant genes and also specifically screen for the presence of the hotspot variant IVS16ins3kb of SLC25A13 by the copy number variant calling algorithm. Genetic second-tier tests were performed for 1.8% of a total of 22,883 NBS samples. The false positive rate for these six conditions after the NGS second-tier test was only 0.017%, and two cases of citrullinemia type II would have been missed as false negatives if only biochemical first-tier testing was performed. The confirmed true positive cases were citrullinemia type II (n = 2) and systemic primary carnitine deficiency (n = 1). The false positives were later confirmed to be carrier of citrullinemia type II (n = 2), carrier of glutaric acidemia type I (n = 1) and carrier of systemic primary carnitine deficiency (n = 1). There were no false negatives reported. The incorporation of a second-tier genetic screening test by NGS greatly enhanced our program's performance with 5-working days turn-around time maintained as before. In addition, early genetic information is available at the time of recall to facilitate better clinical management and genetic counseling.
Collapse
Affiliation(s)
- Toby Chun Hei Chan
- Newborn Screening Laboratory, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong SAR, China; (T.C.H.C.); (M.C.W.Y.); (T.K.W.); (J.K.H.L.); (J.C.L.W.); (K.Y.T.)
| | - Chloe Miu Mak
- Newborn Screening Laboratory, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong SAR, China; (T.C.H.C.); (M.C.W.Y.); (T.K.W.); (J.K.H.L.); (J.C.L.W.); (K.Y.T.)
| | - Matthew Chun Wing Yeung
- Newborn Screening Laboratory, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong SAR, China; (T.C.H.C.); (M.C.W.Y.); (T.K.W.); (J.K.H.L.); (J.C.L.W.); (K.Y.T.)
| | - Eric Chun-Yiu Law
- Newborn Screening Laboratory, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong SAR, China; (T.C.H.C.); (M.C.W.Y.); (T.K.W.); (J.K.H.L.); (J.C.L.W.); (K.Y.T.)
| | - Jana Cheung
- Newborn Screening Laboratory, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong SAR, China; (T.C.H.C.); (M.C.W.Y.); (T.K.W.); (J.K.H.L.); (J.C.L.W.); (K.Y.T.)
| | - Tsz Ki Wong
- Newborn Screening Laboratory, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong SAR, China; (T.C.H.C.); (M.C.W.Y.); (T.K.W.); (J.K.H.L.); (J.C.L.W.); (K.Y.T.)
| | - Vincent Wing-Sang Cheng
- Newborn Screening Laboratory, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong SAR, China; (T.C.H.C.); (M.C.W.Y.); (T.K.W.); (J.K.H.L.); (J.C.L.W.); (K.Y.T.)
| | - Jacky Kwan Ho Lee
- Newborn Screening Laboratory, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong SAR, China; (T.C.H.C.); (M.C.W.Y.); (T.K.W.); (J.K.H.L.); (J.C.L.W.); (K.Y.T.)
| | - Jimmy Chi Lap Wong
- Newborn Screening Laboratory, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong SAR, China; (T.C.H.C.); (M.C.W.Y.); (T.K.W.); (J.K.H.L.); (J.C.L.W.); (K.Y.T.)
| | - Cheuk Wing Fung
- Metabolic Medicine Unit, Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong SAR, China; (C.W.F.); (K.M.B.); (A.M.K.K.)
| | - Kiran Moti Belaramani
- Metabolic Medicine Unit, Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong SAR, China; (C.W.F.); (K.M.B.); (A.M.K.K.)
| | - Anne Mei Kwun Kwok
- Metabolic Medicine Unit, Department of Pediatrics and Adolescent Medicine, Hong Kong Children’s Hospital, Hong Kong SAR, China; (C.W.F.); (K.M.B.); (A.M.K.K.)
| | - Kwok Yeung Tsang
- Newborn Screening Laboratory, Department of Pathology, Hong Kong Children’s Hospital, Hong Kong SAR, China; (T.C.H.C.); (M.C.W.Y.); (T.K.W.); (J.K.H.L.); (J.C.L.W.); (K.Y.T.)
| |
Collapse
|
11
|
Lin Y, Lin C, Zheng Z, Huang C, Peng W. Newborn screening for primary carnitine deficiency using a second-tier genetic test. J Pediatr Endocrinol Metab 2024; 37:163-169. [PMID: 38158618 DOI: 10.1515/jpem-2023-0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES Newborn screening (NBS) for primary carnitine deficiency (PCD) exhibits suboptimal performance. This study proposes a strategy to enhance the efficacy of second-tier genetic screening by adjusting the cutoff value for free carnitine (C0). METHODS Between January 2021 and December 2022, we screened 119,898 neonates for inborn metabolic disorders. Neonates with C0 levels below 12 μmol/L were randomly selected for second-tier genetic screening, employing a novel matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) assay. RESULTS In total, 2,515 neonates with C0 <12 μmol/L underwent further screening, including 206 neonates with C0 <8.5 μmol/L and 320 neonates with 8.5G, accounting for 25 % (7/28) of allelic frequencies. CONCLUSIONS A novel MALDI-TOF MS assay targeting 21 SLC22A5 variants in a Chinese population was successfully established. This assay exhibits a high detection and diagnostic rate, making it suitable for population-based genetic screening. Combined genetic screening is recommended to enhance the efficiency of PCD-NBS.
Collapse
Affiliation(s)
- Yiming Lin
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, P.R. China
| | - Chunmei Lin
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, P.R. China
| | - Zhenzhu Zheng
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, P.R. China
| | - Chenggang Huang
- Zhejiang Biosan Biochemical Technologies Co., Ltd., Hangzhou, Zhejiang Province, P.R. China
| | - Weilin Peng
- Department of Clinical Laboratory, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, P.R. China
| |
Collapse
|
12
|
Sun W, Zhang X, Su H, Wang X, Qin F, Gong X, Wang B, Yu F. Genetic and clinical features of patients with intrahepatic cholestasis caused by citrin deficiency. J Pediatr Endocrinol Metab 2023:jpem-2022-0616. [PMID: 37146272 DOI: 10.1515/jpem-2022-0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/17/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVES Citrin deficiency (CD) is an autosomal recessive disease caused by mutations of the SLC25A13 gene, plasma bile acid profiles detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS) could be an efficient approach for early diagnosis of intrahepatic cholestasis. The aim of this study was to investigate the genetic testing and clinical characteristics of a series of patients with CD, and to analyse plasma bile acid profiles in CD patients. METHODS We retrospectively analysed data from 14 patients (12 males and 2 females, age 1-18 months, mean 3.6 months) with CD between 2015 and 2021, including demographics, biochemical parameters, genetic test results, treatment, and clinical outcomes. In addition, 30 cases (15 males and 15 females, age 1-20 months, mean 3.8 months) with idiopathic cholestasis (IC) served as a control group. Plasma 15 bile acid profiles were compared between the CD and IC groups. RESULTS Eight different mutations of the SLC25A13 gene were detected in the 14 patients diagnosed with CD, of which three novel variants of the SLC25A13 gene were investigated, the c.1043C>T (p.P348L) in exon11, the c.1216dupG (p.A406 Gfs*13) in exon12 and the c.135G>C (p.L45F) in exon3. More than half of the patients with CD had prolonged neonatal jaundice, which was associated with significantly higher alpha-fetoprotein (AFP) levels, hyperlactatemia and hypoglycemia. The majority of patients were ultimately self-limited. Only one patient developed liver failure and died at the age of 1 year due to abnormal coagulation function. In addition, the levels of glycochenodeoxycholic acid (GCDCA), taurocholate (TCA), and taurochenodeoxycholic acid (TCDCA) were significantly increased in the CD group compared with those in the IC group. CONCLUSIONS Three novel variants of the SLC25A13 gene were identified for the first time, providing a reliable molecular reference and expanding the SLC25A13 gene spectrum in patients with CD. Plasma bile acid profiles could be a potential biomarker for non-invasive early diagnosis of patients with intrahepatic cholestasis caused by CD.
Collapse
Affiliation(s)
- Wenjun Sun
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaoxi Zhang
- Department of Urology, Tian You Hospital Affiliated to Wuhan University of Science & Technology, Wuhan, China
| | - Hang Su
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiaoxia Wang
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Fang Qin
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Xiangling Gong
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Bo Wang
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Fei Yu
- Department of Endocrine Genetic Metabolism in Children, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| |
Collapse
|
13
|
Liu G, Liu X, Lin Y. Newborn screening for inborn errors of metabolism in a northern Chinese population. J Pediatr Endocrinol Metab 2023; 36:278-282. [PMID: 36662638 DOI: 10.1515/jpem-2022-0543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Newborn screening (NBS) for inborn errors of metabolism (IEMs) has been successfully implemented in China. However, the data on the IEM profiles in many regions are lacking. This study aimed to report the incidence, disease spectrum, and genetic profile of IEMs in northern China. METHODS A total of 36,590 newborns were screened using tandem mass spectrometry between January 2016 and April 2022. Newborns with positive results were referred for confirmatory testing. RESULTS Ten patients were confirmed to have IEMs, with an overall incidence of 1:3,539 in the Rizhao region. Five types of IEMs were detected, including four patients with propionic acidemia (PA), three patients with methylmalonic acidemia (MMA), one of each with citrin deficiency, primary carnitine deficiency, and isobutyryl-CoA dehydrogenase deficiency. PA was the most common IEM, with an unexpectedly high incidence of 1:8,848, followed by MMA, with an incidence rate of 1:11,797. All patients had abnormal screening markers and harbored biallelic variants in their respective causative genes. Two novel PCCB variants (c.505G>A and c.1123_1124insG) were identified in patients with PA. In silico analyses predicted that these two variants were potentially pathogenic. CONCLUSIONS This study preliminarily clarified the incidence, disease spectrum, and genetic profile of IEMs in the Rizhao region. PA is the most common IEM and MMA is the second most common in our region. The two novel identified PCCB variants further expand the variant spectrum of PA. More attention should be paid to NBS, early diagnosis, and management of PA and MA.
Collapse
Affiliation(s)
- Genxian Liu
- Center of Medical Genetics, Rizhao Maternal and Child Health Care Hospital, Shandong Province, P.R. China
| | - Xingying Liu
- Clinical Laboratory, Rizhao Central Hospital Rizhao, Shandong Province, P.R. China
| | - Yiming Lin
- Center of Neonatal Disease Screening, Quanzhou Maternity and Children's Hospital, Quanzhou, Fujian Province, P.R. China
| |
Collapse
|
14
|
Incorporating second-tier genetic screening for multiple acyl-CoA dehydrogenase deficiency. Clin Chim Acta 2022; 537:181-187. [DOI: 10.1016/j.cca.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
|
15
|
Ding S, Han L. Newborn screening for genetic disorders: Current status and prospects for the future. Pediatr Investig 2022; 6:291-298. [PMID: 36582269 PMCID: PMC9789938 DOI: 10.1002/ped4.12343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Newborn screening (NBS) is a public health service aimed at identifying infants with severe genetic disorders, thus providing effective treatment early enough to prevent or ameliorate the onset of symptoms. Current NBS uses biochemical analysis of dried blood spots, predominately with time-resolved fluorescence immunoassay and tandem mass spectrometry, which produces some false positives and false negatives. The application of enzymatic activity-based testing technology provides a reliable screening method for some disorders. Genetic testing is now commonly used for secondary or confirmatory testing after a positive result in some NBS programs. Recently, next-generation sequencing (NGS) has emerged as a robust tool that enables large panels of genes to be scanned together rapidly. Rapid advances in NGS emphasize the potential for genomic sequencing to improve NBS programs. However, some challenges still remain and require solution before this is applied for population screening.
Collapse
Affiliation(s)
- Si Ding
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital, Shanghai Institute of Pediatric ResearchShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
16
|
Zhang T, Zhu S, Miao H, Yang J, Shi Y, Yue Y, Zhang Y, Yang R, Wu B, Huang X. Dynamic changes of metabolic characteristics in neonatal intrahepatic cholestasis caused by citrin deficiency. Front Mol Biosci 2022; 9:939837. [PMID: 36090036 PMCID: PMC9449879 DOI: 10.3389/fmolb.2022.939837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is a pan-ethnic complicated inborn error of metabolism but the specific mechanism is not fully understood.Methods: A total of 169 patients with NICCD who have biallelic pathogenic SLC25A13 variants detected by targeted next-generation sequencing were collected. They were divided into the “Newborn-screen Group” and “Clinical diagnosed Group” depending on the newborn screening results. Amino acid and acylcarnitine profiles were measured by MS/MS. The total bile acids, blood amino acids and acylcarnitines, general biochemistry, blood count, and coagulation parameters were monitored every 2–3 months. We compared the differences in metabolic indices and their dynamic changes between these two groups. The Mann–Whitney test and orthogonal partial least squares discrimination analysis (OPLS-DA) were used for statistical analysis.Results: At the onset of NICCD, we found that the “Clinical diagnosed Group” had higher levels of intermediate products of the urea cycle, free carnitine, and short-chain and long-chain acylcarnitines than those in the “Newborn-screen Group,” but the levels of ketogenic/glucogenic amino acids and several medium-chain acylcarnitines were lower. Furthermore, concentrations of direct bilirubin, total bile acid, lactate, prothrombin time, and several liver enzymes were significantly higher while total protein, amylase, and hemoglobin were lower in the “Clinical diagnosed Group” than in the “Newborn-screen Group.” Dynamic change analysis showed that direct bilirubin, albumin, arginine, and citrulline were the earliest metabolic derangements to reach peak levels in NICCD groups, followed by acylcarnitine profiles, and finally with the elevation of liver enzymes. All abnormal characteristic metabolic indicators in the “Newborn-screen Group” came back to normal levels at earlier ages than the “Clinical diagnosed Group.” c.852_855del (41.2%), IVS16ins3kb (17.6%), c.615 + 5G>A (9.6%), 1638_1660dup (4.4%), and c.1177 + 1G>A (3.7%) accounted for 76.5% of all the mutated SLC25A13 alleles in our population.Conclusion: Argininosuccinate synthesis, gluconeogenesis, ketogenesis, fatty acid oxidation, liver function, and cholestasis were more severely affected in the “Clinical diagnosed Group.” The “Newborn-screen Group” had a better prognosis which highlighted the importance of newborn screening of NICCD.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shasha Zhu
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Haixia Miao
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianbin Yang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yezhen Shi
- Department of Technical Support, Zhejiang Biosan Biochemical Technologies Co. Ltd., Hangzhou, China
| | - Yuwei Yue
- Department of Technical Support, Zhejiang Biosan Biochemical Technologies Co. Ltd., Hangzhou, China
| | - Yu Zhang
- Department of Technical Support, Zhejiang Biosan Biochemical Technologies Co. Ltd., Hangzhou, China
| | - Rulai Yang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Benqing Wu
- Department of Neonatology, Children’s Medical Center, University of Chinese Academy of Science-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Benqing Wu, ; Xinwen Huang,
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children’s Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Benqing Wu, ; Xinwen Huang,
| |
Collapse
|
17
|
Chen HA, Hsu RH, Chen YH, Hsu LW, Chiang SC, Lee NC, Hwu WL, Chiu PC, Chien YH. Improved diagnosis of citrin deficiency by newborn screening using a molecular second-tier test. Mol Genet Metab 2022; 136:330-336. [PMID: 35798653 DOI: 10.1016/j.ymgme.2022.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Citrin deficiency is an autosomal recessive disorder caused by variants of the SLC25A13 gene. Although newborn screening (NBS) provides an opportunity for its early diagnosis and treatment, citrin deficiency detection rates remain lower than those estimated. METHODS Before 2018, NBS for citrin deficiency was based on citrulline levels alone. In June 2018, a second-tier molecular test was implemented to detect 11 common variants of the SLC25A13 gene and improve the NBS detection rates. This study compares the incidence rates and costs before and after the second-tier implementation. RESULTS Prior to 2018, five subjects were diagnosed via NBS, and 12 of 555,449 newborns screened were missed. In comparison, 11 subjects were diagnosed out of 198,071 newborns screened after 2018, and there were no false-negatives. The citrin deficiency detection rate increased from 1/32,673 to 1/18,006 after the second-tier test was implemented, with only a minimal increase in the total cost. The number of false-positive in our cohort was tolerable. Subjects with citrin deficiency may present with borderline elevated citrulline levels; these can remain slightly elevated or increase considerably on retest. Four patients (80%) detected prior to second-tier testing and six patients (55%) detected after it was implemented were identified based on the citrulline levels alone. However, at the time of second blood sampling, the normal citrulline level of five subjects did not exclude a citrin deficiency diagnosis. CONCLUSIONS Our study shows that it is vital and cost-effective to employ second-tier molecular testing to improve the detection of citrin deficiency by NBS.
Collapse
Affiliation(s)
- Hui-An Chen
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Rai-Hseng Hsu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Han Chen
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Wen Hsu
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Chang Chiang
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Pao-Chin Chiu
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan; Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
18
|
Tavoulari S, Lacabanne D, Thangaratnarajah C, Kunji ERS. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol Metab 2022; 33:539-553. [PMID: 35725541 PMCID: PMC7614230 DOI: 10.1016/j.tem.2022.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022]
Abstract
Citrin deficiency is a pan-ethnic and highly prevalent mitochondrial disease with three different stages: neonatal intrahepatic cholestasis (NICCD), a relatively mild adaptation stage, and type II citrullinemia in adulthood (CTLN2). The cause is the absence or dysfunction of the calcium-regulated mitochondrial aspartate/glutamate carrier 2 (AGC2/SLC25A13), also called citrin, which imports glutamate into the mitochondrial matrix and exports aspartate to the cytosol. In citrin deficiency, these missing transport steps lead to impairment of the malate-aspartate shuttle, gluconeogenesis, amino acid homeostasis, and the urea cycle. In this review, we describe the geological spread and occurrence of citrin deficiency, the metabolic consequences and use our current knowledge of the structure to predict the impact of the known pathogenic mutations on the calcium-regulatory and transport mechanism of citrin.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Denis Lacabanne
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Chancievan Thangaratnarajah
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Edmund R S Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
19
|
Zhou D, Cheng Y, Yin X, Miao H, Hu Z, Yang J, Zhang Y, Wu B, Huang X. Newborn Screening for Mitochondrial Carnitine-Acylcarnitine Cycle Disorders in Zhejiang Province, China. Front Genet 2022; 13:823687. [PMID: 35360862 PMCID: PMC8964036 DOI: 10.3389/fgene.2022.823687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Disorders of mitochondrial carnitine–acylcarnitine cycle is a heterogeneous group of hereditary diseases of mitochondrial β-oxidation of fatty acids tested in NBS program in Zhejiang province, China. Large-scale studies reporting disorders of mitochondrial carnitine–acylcarnitine cycle among Chinese population in NBS are limited. The aim of this study was to explain the incidence and biochemical, clinical, and genetic characteristics of disorders of mitochondrial carnitine–acylcarnitine cycle in NBS. Methods: From January 2009 to June 2021, 4,070,375 newborns were screened by tandem mass spectrometry. Newborns with elevated C0 levels and/or C0/(C16 + C18) ratios were identified as having CPT1D, whereas those with decreased C0 levels and/or C0/(C16 + C18) ratios and/or elevated C12-C18:1 level were identified as having CPT2D or CACTD. Suspected positive patients were further subjected to genetic analysis. All confirmed patients received biochemical and nutritional treatment, as well as follow-up sessions. Results: Overall, 20 patients (12 with CPT1D, 4 with CPT2D, and 4 with CACTD) with disorders of mitochondrial carnitine–acylcarnitine cycle were diagnosed by NBS. The overall incidence of these disorders was one in 203,518 newborns. In toal, 11 patients with CPT1D exhibited increased C0 levels and C0/(C16 + C18) ratios. In all patients of CPT2D, all long chain acyl-carnitines levels were elevated except for case 14 having normal C12 levels. In all patients with CACTD, all long chain acyl-carnitines levels were elevated except for case 17 having normal C12, C18, and C18:1 levels. Most patients with CPT1D were asymptomatic. Overall, two of 4 patients with CPT2D did not present any clinical symptom, but other two patients died. In 4 cases with CACTD, the disease was onset after birth, and 75% patients died. In total, 14 distinct mutations were identified in CPT1A gene, of which 11 were novel and c.1910C > A (p.S637T), c.740C > T (p.P247L), and c.1328T > C (p.L443P) were the most common mutations. Overall, 3 novel mutations were identified in CPT2 gene, and the most frequent mutation was c.1711C > A (p.P571T). The most common variant in SLC25A20 gene was c.199-10T > G. Conclusion: Disorders of mitochondrial carnitine–acylcarnitine cycle can be detected by NBS, and the combined incidence of these disorders in newborns was rare in Zhejiang province, China. Most patients presented typical acylcarnitine profiles. Most patients with CPT1D presented normal growth and development, whereas those with CPT2D/CACTD exhibited a high mortality rate. Several novel CPT1A and CPT2 variants were identified, which expanded the variant spectrum.
Collapse
Affiliation(s)
- Duo Zhou
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, China
| | - Yi Cheng
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, China
| | - Xiaoshan Yin
- School of Health in Social Science, The University of Edinburg, Edinburg, United Kingdom
| | - Haixia Miao
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, China
| | - Jianbin Yang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, China
| | - Yu Zhang
- Zhejiang Bosheng Biotechnology Co, Ltd, Hangzhou, China
| | - Benqing Wu
- Children's Medical Center, University of Chinese Academy of Science - Shenzhen Hospital, Shenzhen, China
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou, China
| |
Collapse
|
20
|
Tong F, Wang J, Xiao R, Wu BB, Zou CC, Wu DW, Wang H, Zou H, Han LS, Yang L, Zou L, Hei MY, Yang RL, Yuan TM, Wen W, Huang XW, Gu XF, Yang YL, Huang YL, Zhang YJ, Yu YG, Xu ZF, Zhou WH, Zhao ZY. Application of next generation sequencing in the screening of monogenic diseases in China, 2021: a consensus among Chinese newborn screening experts. World J Pediatr 2022; 18:235-242. [PMID: 35292922 DOI: 10.1007/s12519-022-00522-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/23/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Fan Tong
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China
| | - Jian Wang
- Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Xiao
- National Engineering Laboratory for Key Technology of Birth Defect Control and Prevention, Screening and Diagnostic R and D Center, Hangzhou, China
| | - Bing-Bing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wan Yuan Road, Min Xing District, Shanghai, 200000, China
| | - Chao-Chun Zou
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China
| | - Ding-Wen Wu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China
| | - Hua Wang
- National Health Commission Key Laboratory for Birth Defect Research and Prevention, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Hui Zou
- Jinan Maternity and Child Care Hospital Affiliated To Shandong First Medical University, Jinan, China
| | - Lian-Shu Han
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Yang
- Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China
| | - Lin Zou
- Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ming-Yan Hei
- Neonatal Center, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ru-Lai Yang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China
| | - Tian-Ming Yuan
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China
| | - Wei Wen
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Xin-Wen Huang
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China
| | - Xue-Fan Gu
- Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | - Yong-Lan Huang
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yong-Jun Zhang
- Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yong-Guo Yu
- Xinhua Hospital, Shanghai Institute for Pediatric Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Feng Xu
- Center of Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wen-Hao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, 399 Wan Yuan Road, Min Xing District, Shanghai, 200000, China.
| | - Zheng-Yan Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China.
| |
Collapse
|
21
|
Huang X, Wu D, Zhu L, Wang W, Yang R, Yang J, He Q, Zhu B, You Y, Xiao R, Zhao Z. Application of a next-generation sequencing (NGS) panel in newborn screening efficiently identifies inborn disorders of neonates. Orphanet J Rare Dis 2022; 17:66. [PMID: 35193651 PMCID: PMC8862216 DOI: 10.1186/s13023-022-02231-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Newborn screening (NBS) has been implemented for neonatal inborn disorders using various technology platforms, but false-positive and false-negative results are still common. In addition, target diseases of NBS are limited by suitable biomarkers. Here we sought to assess the feasibility of further improving the screening using next-generation sequencing technology. Methods We designed a newborn genetic sequencing (NBGS) panel based on multiplex PCR and next generation sequencing to analyze 134 genes of 74 inborn disorders, that were validated in 287 samples with previously known mutations. A retrospective cohort of 4986 newborns was analyzed and compared with the biochemical results to evaluate the performance of this panel. Results The accuracy of the panel was 99.65% with all samples, and 154 mutations from 287 samples were 100% detected. In 4986 newborns, a total of 113 newborns were detected with biallelic or hemizygous mutations, of which 36 newborns were positive for the same disorder by both NBGS and conventional NBS (C-NBS) and 77 individuals were NBGS positive/C-NBS negative. Importantly, 4 of the 77 newborns were diagnosed currently including 1 newborn with methylmalonic acidemia, 1 newborn with primary systemic carnitine deficiency and 2 newborns with Wilson’s disease. A total of 1326 newborns were found to be carriers with an overall carrier rate of 26.6%. Conclusion Analysis based on next generation sequencing could effectively identify neonates affected with more congenital disorders. Combined with C-NBS, this approach may improve the early and accurate identification of neonates with inborn disorders. Our study lays the foundation for prospective studies and for implementing NGS-based analysis in NBS. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02231-x.
Collapse
Affiliation(s)
- Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Dingwen Wu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China.,Zhejiang Neonatal Screening Center, Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lin Zhu
- Hangzhou Biosan Clinical Laboratory Co. Ltd, 859 Shixiang West Road, Hangzhou, Zhejiang Province, People's Republic of China
| | - Wenjun Wang
- Hangzhou Biosan Clinical Laboratory Co. Ltd, 859 Shixiang West Road, Hangzhou, Zhejiang Province, People's Republic of China
| | - Rulai Yang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Jianbin Yang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Qunyan He
- Zhejiang Biosan Biochemical Technologies Co. Ltd, 859 Shixiang West Rd, Hangzhou, 310007, Zhejiang Province, People's Republic of China
| | - Bingquan Zhu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China.,Department of Child Healthcare, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China
| | - Ying You
- Zhejiang Biosan Biochemical Technologies Co. Ltd, 859 Shixiang West Rd, Hangzhou, 310007, Zhejiang Province, People's Republic of China
| | - Rui Xiao
- Zhejiang Biosan Biochemical Technologies Co. Ltd, 859 Shixiang West Rd, Hangzhou, 310007, Zhejiang Province, People's Republic of China.
| | - Zhengyan Zhao
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, People's Republic of China. .,Department of PediatricsChildren's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Binsheng Rd, Hangzhou, 310052, Zhejiang Province, People's Republic of China.
| |
Collapse
|
22
|
Li X, He J, He L, Zeng Y, Huang X, Luo Y, Li Y. Spectrum Analysis of Inherited Metabolic Disorders for Expanded Newborn Screening in a Central Chinese Population. Front Genet 2022; 12:763222. [PMID: 35095998 PMCID: PMC8790479 DOI: 10.3389/fgene.2021.763222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Neonatal inherited metabolic disorders (IMDs) are closely associated with early neonatal death and abnormal growth and development. Increasing attention has been paid to IMDs because of their high incidence and diversity. However, there are no reports about the incidence of IMDs in Changsha, China. Therefore, we retrospectively analyzed the screening results of neonates to evaluate the characteristics of IMDs in the area. From January 2016 to December 2020, 300,849 neonates were enrolled for expanded newborn screening by tandem mass spectrometry in the Neonatal Disease Screening Center of the Changsha Hospital for Maternal & Child Health Care. Newborns with mild initial results were recalled for repeated tests; if the second test was still positive, the patient was referred for confirmatory tests. A total of 71 confirmed cases were identified in our study, with an incidence rate of 1:4,237. There were 28 cases of amino acid metabolic disorders, representing 39.44% of the IMDs diagnosed, with an incidence rate of 1:10,745. Twelve newborns were diagnosed with organic acid metabolic disorders, accounting for 16.66% of IMDs, with an incidence rate of 1:25,071. There were 31 cases of fatty acid oxidation disorders, representing 43.05% of IMDs, with an incidence rate of 1:9,705. Overall, 14 types of IMDs were found in Changsha. The most common disorders in the region were primary carnitine deficiency, hyperphenylalaninemia and short-chain acyl-CoA dehydrogenase deficiency. Their incidence rate is respectively 1:13,675, 1:16,714 and 1:42,978. The mutations in PAH, SLC22A5, and ACADS are the leading causes of IMDs in this area. This study demonstrates the importance of utilizing MS/MS in IMD screening for early diagnosis and treatment. This strategy may be used for prenatal genetic counseling to avoid irreversible growth and intellectual development disorders in children.
Collapse
Affiliation(s)
- Xia Li
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Jun He
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Ling He
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Yudong Zeng
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Xuzhen Huang
- Technical Support Center, Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, China
| | - Yechao Luo
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Yujiao Li
- Neonatal Disease Screening Center, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| |
Collapse
|
23
|
Ding Y, Zhang M, Li C, Xie B, Zhao G, Sun Y. RETRACTED ARTICLE: A reusable aptasensor based on the dual signal amplification of Ce@AuNRs-PAMAM-Fc and DNA walker for ultrasensitive detection of TNF-α. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-020-04885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Zhou M, Deng L, Huang Y, Xiao Y, Wen J, Liu N, Zeng Y, Zhang H. Application of the Artificial Intelligence Algorithm Model for Screening of Inborn Errors of Metabolism. Front Pediatr 2022; 10:855943. [PMID: 35664874 PMCID: PMC9160361 DOI: 10.3389/fped.2022.855943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are strongly related to abnormal growth and development in newborns and can even result in death. In total, 94,648 newborns were enrolled for expanded newborn screening using tandem mass spectrometry (MS/MS) from 2016 to 2020 at the Neonatal Disease Screening Center of the Maternal and Child Health Hospital in Shaoyang City, China. A total of 23 confirmed cases were detected in our study with an incidence rate of 1:4,115. A total of 10 types of IEM were identified, and the most common IEMs were phenylalanine hydroxylase deficiency (PAHD; 1:15,775) and primary carnitine deficiency (PCD; 1:18,930). Mutations in phenylalanine hydroxylase (PAH) and SLC22A5 were the leading causes of IEMs. To evaluate the application effect of artificial intelligence (AI) in newborn screening, we used AI to retrospectively analyze the screening results and found that the false-positive rate could be decreased by more than 24.9% after using AI. Meanwhile, a missed case with neonatal intrahepatic cholestasis citrin deficiency (NICCD) was found, the infant had a normal citrulline level (31 μmol/L; cutoff value of 6-32 μmol/L), indicating that citrulline may not be the best biomarker of intrahepatic cholestasis citrin deficiency. Our results indicated that the use of AI in newborn screening could improve efficiency significantly. Hence, we propose a novel strategy that combines expanded neonatal IEM screening with AI to reduce the occurrence of false positives and false negatives.
Collapse
Affiliation(s)
- Muping Zhou
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Liyuan Deng
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Yan Huang
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Ying Xiao
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Jun Wen
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Na Liu
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Yingchao Zeng
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| | - Hua Zhang
- Neonatal Disease Screening Center, The Maternal and Child Health Hospital of Shaoyang City, Shaoyang, China
| |
Collapse
|
25
|
Lin Y, Zhang W, Huang C, Lin C, Lin W, Peng W, Fu Q, Chen D. Increased detection of primary carnitine deficiency through second-tier newborn genetic screening. Orphanet J Rare Dis 2021; 16:149. [PMID: 33757571 PMCID: PMC7988980 DOI: 10.1186/s13023-021-01785-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Newborn screening for primary carnitine deficiency (NBS) is commonly implemented worldwide; however, it has poor sensitivity. This study aimed to evaluate the feasibility of improving screening by including a second-tier genetic assay. RESULTS An Agena iPLEX assay was developed to identify 17 common SLC22A5 mutations in Chinese populations and was applied in NBS as a second-tier screening. From January 2017 to December 2018, 204,777 newborns were screened for PCD using tandem mass spectrometry. A total of 316 (0.15%) residual NBS-positive specimens with low free carnitine (C0) levels were subjected to this second-tier screening. The screening identified 20 screen-positive newborns who harboured biallelic mutations in theSLC22A5 gene, 99 carriers with one mutation, and 197 screen-negative newborns with no mutations. Among the 99 carriers, four newborns were found to have a second disease-causing SLC22A5mutation by further genetic analysis. Among the 197 screen-negatives were four newborns with persistently low C0 levels, and further genetic analysis revealed that one newborn had two novel SLC22A5 pathogenic variants. In total, 25 newborns were diagnosed with PCD, for a positive predictive value of 7.91% (25/316). Based on these data, we estimate the incidence of PCD in Quanzhou is estimated to be 1:8191.Thirteen distinct SLC22A5 variants were identified, and the most common was c.760C > T, with an allelic frequency of 32% (16/50), followed by c.1400C > G (7/50, 14%), and c.51C > G (7/50, 14%). CONCLUSION Data from this study revealed that 24% (6/25) of PCD cases would have been missed by conventional NBS. This high-throughput iPLEX assay is a powerful tool for PCD genotyping. The addition of this second-tier genetic screening to the current NBS program could identify missed PCD cases, thereby increasing PCD detection. However, further studies are needed to optimise the workflow of the new screening algorithm and to evaluate the cost-effectiveness of this screening approach.
Collapse
Affiliation(s)
- Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Weifeng Zhang
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Chenggang Huang
- Zhejiang Biosan Biochemical Technologies Co., Ltd, Hangzhou, China
| | - Chunmei Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Weihua Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Weilin Peng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Qingliu Fu
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| | - Dongmei Chen
- Department of Neonatal Intensive Care Unit, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
26
|
Zhang R, Qiang R, Song C, Ma X, Zhang Y, Li F, Wang R, Yu W, Feng M, Yang L, Wang X, Cai N. Spectrum analysis of inborn errors of metabolism for expanded newborn screening in a northwestern Chinese population. Sci Rep 2021; 11:2699. [PMID: 33514801 PMCID: PMC7846761 DOI: 10.1038/s41598-021-81897-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Expanded newborn screening facilitates early identification and intervention of patients with inborn errors of metabolism (IEMs), There is a lack of disease spectrum data for many areas in China. To determine the disease spectrum and genetic characteristics of IEMs in Xi'an city of Shaanxi province in northwest China, 146152 newborns were screening by MSMS from January 2014 to December 2019 and 61 patients were referred to genetic analysis by next generation sequencing (NGS) and validated by Sanger sequencing. Seventy-five newborns and two mothers were diagnosed with IEMs, with an overall incidence of 1:1898 (1:1949 without mothers). There were 35 newborns with amino acidemias (45.45%, 1:4176), 28 newborns with organic acidurias (36.36%, 1:5220), and 12 newborns and two mothers with FAO disorders (18.18%; 1:10439 or 1:12179 without mothers). Phenylketonuria and methylmalonic acidemia were the two most common disorders, accounting for 65.33% (49/75) of all confirmed newborn. Some hotspot mutations were observed for several IEMs, including PAH gene c.728G>A for phenylketonuria; MMACHC gene c.609G>A and c.567dupT, MMUT gene c.323G>A for methylmalonic acidemia and SLC25A13 gene c.852_855del for citrin deficiency. Our study provides effective clinical guidance for the popularization and application of expanded newborn screening, genetic screening, and genetic counseling of IEMs in this region.
Collapse
Affiliation(s)
- Ruixue Zhang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Rong Qiang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China.
| | - Chengrong Song
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Xiaoping Ma
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Yan Zhang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Fengxia Li
- Department of Pediatrics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Rui Wang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Wenwen Yu
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Mei Feng
- Department of Child Healthcare, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Lihui Yang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Xiaobin Wang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| | - Na Cai
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, 1616 Yanxiang Road, Xi'an, Shaanxi Province, China
| |
Collapse
|
27
|
Zeng Q, Yang Y, Luo J, Xu J, Deng C, Yang Y, Tan S, Sun S, Li Y, Ou T. Rapid Genetic Diagnosis of Citrin Deficiency by Multicolor Melting Curve Analysis. Front Pediatr 2021; 9:654527. [PMID: 34026689 PMCID: PMC8133314 DOI: 10.3389/fped.2021.654527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Citrin deficiency caused by SLC25A13 genetic mutations is an autosomal recessive disease, and four prevalent mutations including c.851_854del, c.1638_1660dup, IVS6+5G>A, and IVS16ins3kb make up >80% of total pathogenic mutations within the Chinese population. However, suitable assays for detection of these mutations have not yet been developed for use in routine clinical practice. In the current study, a real-time PCR-based multicolor melting curve analysis (MMCA) was developed to detect the four prevalent mutations in one closed-tube reaction. The analytical and clinical performances were evaluated using artificial templates and clinical samples. All four mutations in the test samples were accurately genotyped via their labeling fluorophores and Tm values, and the standard deviations of Tm values were indicated to be <0.2°C. The limit of detection was estimated to be 500 diploid human genomes per reaction. The MMCA assay of 5,332 healthy newborns from southern China identified a total of 107 SLC25A13-mutation carriers, indicating a carrier rate of 2%. The genotypes of 107 carriers and 112 random non-carriers were validated using direct sequencing and Long-range PCR with 100% concordance. In conclusion, the assay developed in this study may potentially serve as a rapid genetic diagnostic tool for citrin deficiency.
Collapse
Affiliation(s)
- Qinlong Zeng
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Yingsong Yang
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Jiahong Luo
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Jinmei Xu
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Choufen Deng
- Department of Pediatrics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Yuanjuan Yang
- Department of Pediatrics, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Shuming Tan
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Shuxiang Sun
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Yuping Li
- Medical Genetics Center, Jiangmen Maternity and Child Health Care Hospital, Jiangmen, China
| | - Tong Ou
- Prenatal Diagnosis Center and Medical Laboratory, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, China
| |
Collapse
|
28
|
Citrin deficiency mimicking mitochondrial depletion syndrome. BMC Pediatr 2020; 20:518. [PMID: 33176737 PMCID: PMC7659096 DOI: 10.1186/s12887-020-02409-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/30/2020] [Indexed: 11/10/2022] Open
Abstract
Background Neonatal intrahepatic cholestasis caused by citrin deficiency (CD) is a rare inborn error of metabolism due to variants in the SLC25A13 gene encoding the calcium-binding protein citrin. Citrin is an aspartate-glutamate carrier located within the inner mitochondrial membrane. Case presentation We report on two siblings of Romanian-Vietnamese ancestry with citrin deficiency. Patient 1 is a female who presented at age 8 weeks with cholestasis, elevated lactate levels and recurrent severe hypoglycemia. Diagnosis was made by whole exome sequencing and revealed compound heterozygosity for the frameshift variant c.852_855del, p.Met285Profs*2 and a novel deletion c.(69 + 1_70–1)_(212 + 1_231–1)del in SLC25A13. The girl responded well to dietary treatment with a lactose-free, MCT-enriched formula. Her younger brother (Patient 2) was born 1 year later and also found to be carrying the same gene variants. Dietary treatment from birth was able to completely prevent clinical manifestation until his current age of 4.5 months. Conclusions As CD is a well-treatable disorder it should be ruled out early in the differential diagnosis of neonatal cholestasis. Due to the combination of hepatopathy, lactic acidosis and recurrent hypoglycemia the clinical presentation of CD may resemble hepatic mitochondrial depletion syndrome.
Collapse
|
29
|
Lin Y, Lin W, Chen Y, Lin C, Zheng Z, Zhuang J, Fu Q. Combined primary carnitine deficiency with neonatal intrahepatic cholestasis caused by citrin deficiency in a Chinese newborn. BMC Pediatr 2020; 20:478. [PMID: 33050909 PMCID: PMC7552534 DOI: 10.1186/s12887-020-02372-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Background Primary carnitine deficiency (PCD) is an autosomal recessive disorder affecting the carnitine cycle and resulting in defective fatty acid oxidation. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) is an autosomal recessive disorder and one of the main causes of inherited neonatal cholestasis. Both PCD and NICCD are included in the current expanded newborn screening (NBS) targets. Case presentation Targeted exome sequencing was performed on a Chinese proband, and Sanger sequencing was utilised to validate the detected mutations. The patient who was initially suspected to have PCD based on the NBS results presented with neonatal intrahepatic cholestasis and ventricular septal defect. Further investigations not only confirmed PCD but also revealed the presence of NICCD. Four distinct mutations were detected, including c.51C > G (p.F17L) and c.760C > T (p.R254X) in SLC22A5 as well as c.615 + 5G > A and IVS16ins3kb in SLC25A13. Conclusions This is the first reported case of PCD and NICCD occurring in the same patient. The dual disorders in a newborn broaden our understanding of inherited metabolic diseases. Thus, this study highlighted the importance of further genetic testing in patients presenting with unusual metabolic screening findings.
Collapse
Affiliation(s)
- Yiming Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Weihua Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Yanru Chen
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Chunmei Lin
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Zhenzhu Zheng
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China
| | - Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| | - Qingliu Fu
- Neonatal Disease Screening Center, Quanzhou Maternity and Children's Hospital, 700 Fengze Street, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|