1
|
Sánchez A, Caraballo A, Alvarez L, Valencia O, Restrepo MN, Gaviria R, Velasquez-Lopera M, Urrego JR, Sánchez J. Molecular characteristics of atopic dermatitis patients with clinical remission. World Allergy Organ J 2024; 17:100983. [PMID: 39534446 PMCID: PMC11555337 DOI: 10.1016/j.waojou.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Atopic dermatitis (AD) is a frequent disease in infants with diverse clinical evolution. Although multiple studies have assessed inflammatory changes in chronic AD, little is known about the molecular transition from symptomatic stage to clinical remission without pharmacotherapy. Objective The aim of the study was to evaluate clinical and inflammatory factors and its relationship with AD clinical evolution. Methods Three groups of participants older than 10 years of age were recruited; 2 AD groups and 1 non-AD group. The AD-remission group (more than 1 year without AD symptoms and without pharmacotherapy), the AD-persistent group (AD symptoms and pharmacotherapy), and 1 non-AD group. We measured eosinophil peroxidase (EPX), eosinophil cationic protein (ECP), IgE autoantibodies against these antigens, and natural moisturizing factor (NMF). Results Different inflammatory profiles within each group were observed: AD-persistent group is characterized by a high frequency of IgE autoantibodies (55.5%), contrasting with the low occurrence in the non-AD group (2%) and a moderate frequency in the AD-remission group (21.4%). A similar distribution was observed for the other type 2 inflammatory biomarkers (Eosinophils, total IgE, EPX, ECP) and NMF. Conclusion Patients with AD-remission maintain a minimal T2 inflammation. We identified different potential biomarkers for prognosis of AD evolution. Further studies are necessary to evaluate the mechanisms that allow the coexistence of the inflammatory process without clinical symptoms.
Collapse
Affiliation(s)
- Andrés Sánchez
- Group of Clinical and Experimental Allergy (GACE), Hospital “Alma Mater de Antioquia”, University of Antioquia, Medellín, Colombia
- Medicine Deparment, University “Corporación Universitaria Rafael Nuñez”, Cartagena, Colombia
| | - Ana Caraballo
- Group of Clinical and Experimental Allergy (GACE), Hospital “Alma Mater de Antioquia”, University of Antioquia, Medellín, Colombia
| | - Leidy Alvarez
- Technological Economics Evaluations Group, SURA Company, Medellín, Colombia
| | | | | | | | | | - Juan-Ricardo Urrego
- Medicine Deparment, University “Corporación Universitaria Rafael Nuñez”, Cartagena, Colombia
| | - Jorge Sánchez
- Group of Clinical and Experimental Allergy (GACE), Hospital “Alma Mater de Antioquia”, University of Antioquia, Medellín, Colombia
- Allergology Unit IPS, Medellín, Colombia
| |
Collapse
|
2
|
Qi LJ, Gao S, Ning YH, Chen XJ, Wang RZ, Feng X. Bimin Kang ameliorates the minimal persistent inflammation in allergic rhinitis by reducing BCL11B expression and regulating ILC2 plasticity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118454. [PMID: 38852638 DOI: 10.1016/j.jep.2024.118454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Minimal persistent inflammation (MPI) is a major contributor to the recurrence of allergic rhinitis (AR). The traditional Chinese herbal medicine known as Bimin Kang Mixture (BMK) have been used in clinics for decades to treat AR, which can relieve AR symptoms, reduce inflammatory response and improve immune function. However, its mechanism in controlling MPI is still unclear. AIM OF THE STUDY This study aims to assess the therapeutic effect of BMK on MPI, and elaborate the mechanism involved in BMK intervention in BCL11B regulation of type 2 innate lymphoid cell (ILC2) plasticity in the treatment of MPI. MATERIAL AND METHODS The effect of BMK (9.1 ml/kg) and Loratadine (15.15 mg/kg) on MPI was evaluated based on symptoms, pathological staining, and ELISA assays. RT-qPCR and flow cytometry were also employed to assess the expression of BCL11B, IL-12/IL-12Rβ2, and IL-18/IL-18Rα signaling pathways associated with ILC2 plasticity in the airway tissues of MPI mice following BMK intervention. RESULTS BMK restored the airway epithelial barrier, and markedly reduced inflammatory cells (eosinophils, neutrophils) infiltration (P < 0.01) and goblet cells hyperplasia (P < 0.05). BCL11B expression positively correlated with the ILC2 proportion in the lungs and nasal mucosa of AR and MPI mice (P < 0.01). BMK downregulated BCL11B expression (P < 0.05) and reduced the proportion of ILC2, ILC3 and ILC3-like ILC2 subsets (P < 0.05). Moreover, BMK promoted the conversion of ILC2 into an ILC1-like phenotype through IL-12/IL-12Rβ2 and IL-18/IL-18Rα signaling pathways in MPI mice. CONCLUSION By downregulating BCL11B expression, BMK regulates ILC2 plasticity and decreases the proportion of ILC2, ILC3, and ILC3-like ILC2 subsets, promoting the conversion of ILC2 to ILC1, thus restoring balance of ILC subsets in airway tissues and control MPI.
Collapse
Affiliation(s)
- Li-Jie Qi
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, 250012, China.
| | - Shang Gao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Yun-Hong Ning
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China.
| | - Xiang-Jing Chen
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| | - Ren-Zhong Wang
- Department of Otorhinolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China.
| | - Xin Feng
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Fouda A, Maallah MT, Kouyoumdjian A, Negi S, Paraskevas S, Tchervenkov J. RORγt inverse agonist TF-S14 inhibits Th17 cytokines and prolongs skin allograft survival in sensitized mice. Commun Biol 2024; 7:454. [PMID: 38609465 PMCID: PMC11014929 DOI: 10.1038/s42003-024-06144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic antibody mediated rejection (AMR) is the major cause of solid organ graft rejection. Th17 contributes to AMR through the secretion of IL17A, IL21 and IL22. These cytokines promote neutrophilic infiltration, B cell proliferation and donor specific antibodies (DSAs) production. In the current study we investigated the role of Th17 in transplant sensitization. Additionally, we investigated the therapeutic potential of novel inverse agonists of the retinoic acid receptor-related orphan receptor gamma t (RORγt) in the treatment of skin allograft rejection in sensitized mice. Our results show that RORγt inverse agonists reduce cytokine production in human Th17 cells in vitro. In mice, we demonstrate that the RORγt inverse agonist TF-S14 reduces Th17 signature cytokines in vitro and in vivo and leads to blocking neutrophilic infiltration to skin allografts, inhibition of the B-cell differentiation, and the reduction of de novo IgG3 DSAs production. Finally, we show that TF-S14 prolongs the survival of a total mismatch grafts in sensitized mice. In conclusion, RORγt inverse agonists offer a therapeutic intervention through a novel mechanism to treat rejection in highly sensitized patients.
Collapse
Affiliation(s)
- Ahmed Fouda
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada.
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
| | - Mohamed Taoubane Maallah
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
| | - Araz Kouyoumdjian
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
| | - Sarita Negi
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
| | - Steven Paraskevas
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada
| | - Jean Tchervenkov
- Division of Surgical and Interventional Sciences, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
- Research Institute of the McGill University Health Centre, Montréal, QC, H3H 2R9, Canada.
- McGill University Health Centre, Montréal, QC, H4A 3J1, Canada.
- Division of General Surgery, Department of Surgery, McGill University, Montréal, QC, H3G 1A4, Canada.
| |
Collapse
|
4
|
Emami Fard N, Xiao M, Sehmi R. Regulatory ILC2-Role of IL-10 Producing ILC2 in Asthma. Cells 2023; 12:2556. [PMID: 37947634 PMCID: PMC10650705 DOI: 10.3390/cells12212556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/12/2023] Open
Abstract
Over the past two decades, a growing body of evidence observations have shown group two innate lymphoid cells (ILC2) to be critical drivers of Type 2 (T2) inflammatory responses associated with allergic inflammatory conditions such as asthma. ILC2 releases copious amounts of pro-inflammatory T2 cytokines-interleukin (IL)-4, IL-5, IL-9, and IL-13. This review provides a comprehensive overview of the newly discovered regulatory subtype of ILC2 described in murine and human mucosal tissue and blood. These KLRG1+ILC2 have the capacity to produce the anti-inflammatory cytokine IL-10. Papers compiled in this review were based on queries of PubMed and Google Scholar for articles published from 2000 to 2023 using keywords "IL-10" and "ILC2". Studies with topical relevance to IL-10 production by ILC2 were included. ILC2 responds to microenvironmental cues, including retinoic acid (RA), IL-2, IL-4, IL-10, and IL-33, as well as neuropeptide mediators such as neuromedin-U (NMU), prompting a shift towards IL-10 and away from T2 cytokine production. In contrast, TGF-β attenuates IL-10 production by ILC2. Immune regulation provided by IL-10+ILC2s holds potential significance for the management of T2 inflammatory conditions. The observation of context-specific cues that alter the phenotype of ILC warrants examining characteristics of ILC subsets to determine the extent of plasticity or whether the current classification of ILCs requires refinement.
Collapse
Affiliation(s)
| | | | - Roma Sehmi
- Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (N.E.F.)
| |
Collapse
|
5
|
Falquet M, Su Z, Wyss T, Ercolano G, Trabanelli S, Jandus C. Dynamic single-cell regulomes characterize human peripheral blood innate lymphoid cell subpopulations. iScience 2023; 26:107728. [PMID: 37694139 PMCID: PMC10483052 DOI: 10.1016/j.isci.2023.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Innate lymphoid cells (ILCs) are plastic immune cells divided into 3 main subsets, characterized by distinct phenotypic and functional profiles. Using single cell approaches, heightened heterogeneity of mouse ILCs has been appreciated, imprinted by tissue signals that shape their transcriptome and epigenome. Intra-subset diversity has also been observed in human ILCs. However, combined transcriptomic and epigenetic analyses of single ILCs in humans are lacking. Here, we show high transcriptional and epigenetic heterogeneity among human circulating ILCs in healthy individuals. We describe phenotypically distinct subclusters and diverse chromatin accessibility within main ILC populations, compatible with differentially poised states. We validate the use of this healthy donor-based analysis as resource dataset to help inferring ILC changes occurring in disease conditions. Overall, our work provides insights in the complex human ILC biology. We anticipate it to facilitate hypothesis-driven studies in patients, without the need to perform single cell OMICs using precious patients' material.
Collapse
Affiliation(s)
- Maryline Falquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ziyang Su
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tania Wyss
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Data Science Facility, AGORA Cancer Research Center, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Giuseppe Ercolano
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | - Sara Trabanelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Geneva Center for Inflammation Research, Geneva, Switzerland
- Translational Research Center for Oncohematology, Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Jan-Abu SC, Kabil A, McNagny KM. Parallel origins and functions of T cells and ILCs. Clin Exp Immunol 2023; 213:76-86. [PMID: 37235977 PMCID: PMC10324547 DOI: 10.1093/cei/uxad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023] Open
Abstract
Innate lymphoid cells (ILCs) are tissue resident cells that are triggered through a relatively broad spectrum of alarmins, inflammatory cues, neuropeptides, and hormones. Functionally, ILCs are akin to subsets of helper T cells and are characterized by a similar effector cytokine profile. They also share a dependency on many of the same essential transcription factors identified for the maintenance and survival of T cells. The key distinguishing factor between the ILC family and T cells is the lack of antigen-specific T cell receptor (TCR) on ILCs and, thus, they can be considered the "ultimate invariant T cells". ILCs, like T cells, orchestrate downstream effector inflammatory responses by adjusting the cytokine microenvironment in a fashion that promotes protection, health, and homeostasis at mucosal barrier sites. But also, like T cells, ILCs have recently been implicated in several pathological inflammatory disease states. This review focuses on the selective role of ILCs in the development of allergic airway inflammation (AAI) and fibrosis in the gut where a complex ILC interplay has been shown to either attenuate or worsen disease. Finally, we discuss new data on TCR gene rearrangements in subsets of ILCs that challenge the current dogma linking their origin to committed bone marrow progenitors and instead propose a thymic origin for at least some ILCs. In addition, we highlight how naturally occurring TCR rearrangements and the expression of major histocompatibility (MHC) molecules in ILCs provide a useful natural barcode for these cells and may prove instrumental in studying their origins and plasticity.
Collapse
Affiliation(s)
- Sia C Jan-Abu
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Ahmed Kabil
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart and Lung Innovation (HLI), St Paul’s Hospital, Vancouver, BC, Canada
| |
Collapse
|
7
|
Group 2 innate lymphoid cells in human asthma. Allergol Int 2022; 72:194-200. [PMID: 36585333 DOI: 10.1016/j.alit.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/30/2022] Open
Abstract
Asthma is characterized by increased airway hyperresponsiveness, reversible airflow limitation, and remodeling due to allergic airway inflammation. Asthma has been proposed to be classified into various phenotypes by cluster analyses integrating clinical information and laboratory data. Recently, asthma has been classified into two major endotypes, Type 2-high and Type 2-low asthma, and various subtypes based on the underlying molecular mechanisms. In Type 2-high asthma, Th2 cells, together with group 2 innate lymphoid cells (ILC2s), produce type 2 cytokines such as IL-4, IL-5, IL-9, and IL-13, which play crucial roles in causing airway inflammation. The roles of ILC2s in asthma pathogenesis have been analyzed primarily in murine models, demonstrating their importance not only in IL-33- or papain-induced innate asthma models but also in house dust mite (HDM)- or ovalbumin (OVA)-induced acquired asthma models evoked in an antigen-specific manner. Recently, evidence regarding the roles of ILC2s in human asthma is also accumulating. This minireview summarizes the roles of ILC2s in asthma, emphasizing human studies.
Collapse
|