1
|
Jensen SB. Radioactive Molecules 2021-2022. Molecules 2024; 29:265. [PMID: 38202848 PMCID: PMC10780926 DOI: 10.3390/molecules29010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In 2020 I was invited to write an editorial review on radioactive molecules published in Molecules in 2019 and 2020 [...].
Collapse
Affiliation(s)
- Svend Borup Jensen
- Department of Nuclear Medicine, Aalborg University Hospital, 9000 Aalborg, Denmark;
- Department of Chemistry and Biochemistry, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
2
|
Jewett EM, Någren K, Mock BH, Watkins GL. 30 years of [ 11C]methyl triflate. Appl Radiat Isot 2023; 197:110812. [PMID: 37087867 DOI: 10.1016/j.apradiso.2023.110812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 04/25/2023]
Abstract
Some scientific discoveries are well known only to a core group of researchers working on technical subjects. Nevertheless, they open new research directions, allow existing knowledge to be viewed in entirely new and useful ways, or provide a way to make something that was hard or impossible to make before. Carbon-11 methyl triflate ([11C]MeOTf) is one such advance, facilitating the synthesis of many carbon-11 radio tracers and broadening the range of applications of carbon-11 radiochemistry. The year 2022 marked the 30th anniversary of the original paper in Applied Radiation and Isotopes introducing a simple synthesis of [11C]MeOTf from carbon-11 methyl iodide ([11C]MeI) and it also marked the end of the fruitful career and life of the researcher who developed it, Douglas Jewett. It seems fitting to say a few words on how it came to be and how it has helped advance carbon-11 radiochemistry.
Collapse
Affiliation(s)
| | - Kjell Någren
- Östre Stationsvej, 36 1TH, 5000, Odense, Denmark
| | - Bruce H Mock
- Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | |
Collapse
|
3
|
Coenen HH, Ermert J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021; 92:241-269. [PMID: 32900582 DOI: 10.1016/j.nucmedbio.2020.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Positron-emission-tomography (PET) has become an indispensable diagnostic tool in modern nuclear medicine. Its outstanding molecular imaging features allow repetitive studies on one individual and with high sensitivity, though no interference. Rather few positron-emitters with near favourable physical properties, i.e. carbon-11 and fluorine-18, furnished most studies in the beginning, preferably if covalently bound as isotopic label of small molecules. With the advancement of PET-devices the scope of in vivo research in life sciences and especially that of medical applications expanded, and other than "standard" PET-nuclides received increasing significance, like the radiometals copper-64 and gallium-68. Especially during the last decades, positron-emitters of other chemical elements have gotten into the focus of interest, concomitant with the technical advancements in imaging and radionuclide production. With known nuclear imaging properties and main production methods of emerging positron-emitters their usefulness for medical application is promising and even proven for several ones already. Unfortunate decay properties could be corrected for, and β+-emitters, especially with a longer half-life, provided new possibilities for application where slower processes are of importance. Further on, (bio)chemical features of positron-emitters of other elements, among there many metals, not only expanded the field of classical clinical investigations, but also opened up new fields of application. Appropriately labelled peptides, proteins and nanoparticles lend itself as newer probes for PET-imaging, e.g. in theragnostic or PET/MR hybrid imaging. Furthermore, the potential of non-destructive in-vivo imaging with positron-emission-tomography directs the view on further areas of life sciences. Thus, exploiting the excellent methodology for basic research on molecular biochemical functions and processes is increasingly encouraged as well in areas outside of health, such as plant and environmental sciences.
Collapse
Affiliation(s)
- Heinz H Coenen
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| | - Johannes Ermert
- Institut für Neurowissenschaften und Medizin, INM-5, Nuklearchemie, Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany.
| |
Collapse
|
4
|
Noe CR, Noe-Letschnig M, Handschuh P, Noe CA, Lanzenberger R. Dysfunction of the Blood-Brain Barrier-A Key Step in Neurodegeneration and Dementia. Front Aging Neurosci 2020; 12:185. [PMID: 32848697 PMCID: PMC7396716 DOI: 10.3389/fnagi.2020.00185] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium in the brain is an essential part of the blood-brain-barrier (BBB) because of its very tight structure to secure a functional and molecular separation of the brain from the rest of the body and to protect neurons from pathogens and toxins. Impaired transport of metabolites across the BBB due to its increasing dysfunction affects brain health and cognitive functioning, thus providing a starting point of neurodegenerative diseases. The term “cerebral metabolic syndrome” is proposed to highlight the importance of lifestyle factors in neurodegeneration and to describe the impact of increasing BBB dysfunction on neurodegeneration and dementia, especially in elderly patients. If untreated, the cerebral metabolic syndrome may evolve into dementia. Due to the high energy demand of the brain, impaired glucose transport across the BBB via glucose transporters as GLUT1 renders the brain increasingly susceptible to neurodegeneration. Apoptotic processes are further supported by the lack of essential metabolites of the phosphocholine synthesis. In Alzheimer’s disease (AD), inflammatory and infectious processes at the BBB increase the dysfunction and might be pace-making events. At this point, the potentially highly relevant role of the thrombocytic amyloid precursor protein (APP) in endothelial inflammation of the BBB is discussed. Chronic inflammatory processes of the BBB transmitted to an increasing number of brain areas might cause a lasting build-up of spreading, pore-forming β-amyloid fragments explaining the dramatic progression of the disease. In the view of the essential requirement of an early diagnosis to investigate and implement causal therapeutic strategies against dementia, brain imaging methods are of great importance. Therefore, status and opportunities in the field of diagnostic imaging of the living human brain will be portrayed, comprising diverse techniques such as positron emissions tomography (PET) and functional magnetic resonance imaging (fMRI) to uncover the patterns of atrophy, protein deposits, hypometabolism, and molecular as well as functional alterations in AD.
Collapse
Affiliation(s)
- Christian R Noe
- Department of Medicinal Chemistry, University of Vienna, Vienna, Austria
| | | | - Patricia Handschuh
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Anna Noe
- Department of Otorhinolaryngology, University Clinic St. Poelten, St. Poelten, Austria
| | - Rupert Lanzenberger
- Neuroimaging Lab (NIL), Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Pyrazoles as Key Scaffolds for the Development of Fluorine-18-Labeled Radiotracers for Positron Emission Tomography (PET). Molecules 2020; 25:molecules25071722. [PMID: 32283680 PMCID: PMC7181023 DOI: 10.3390/molecules25071722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
The need for increasingly personalized medicine solutions (precision medicine) and quality medical treatments, has led to a growing demand and research for image-guided therapeutic solutions. Positron emission tomography (PET) is a powerful imaging technique that can be established using complementary imaging systems and selective imaging agents—chemical probes or radiotracers—which are drugs labeled with a radionuclide, also called radiopharmaceuticals. PET has two complementary purposes: selective imaging for diagnosis and monitoring of disease progression and response to treatment. The development of selective imaging agents is a growing research area, with a high number of diverse drugs, labeled with different radionuclides, being reported nowadays. This review article is focused on the use of pyrazoles as suitable scaffolds for the development of 18F-labeled radiotracers for PET imaging. A brief introduction to PET and pyrazoles, as key scaffolds in medicinal chemistry, is presented, followed by a description of the most important [18F]pyrazole-derived radiotracers (PET tracers) that have been developed in the last 20 years for selective PET imaging, grouped according to their specific targets.
Collapse
|
6
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Hieu Tran V, Park H, Park J, Kwon YD, Kang S, Ho Jung J, Chang KA, Chul Lee B, Lee SY, Kang S, Kim HK. Synthesis and evaluation of novel potent TSPO PET ligands with 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide. Bioorg Med Chem 2019; 27:4069-4080. [PMID: 31353076 DOI: 10.1016/j.bmc.2019.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/23/2022]
Abstract
Translocator protein (TSPO) expression is closely related with neuroinflammation and neuronal damage which might cause several central nervous system diseases. Herein, a series of TSPO ligands (11a-c and 13a-d) with a 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide structure were prepared and evaluated via an in vitro binding assay. Most of the novel ligands exhibited a nano-molar affinity for TSPO, which was better than that of DPA-714. Particularly, 11a exhibited a subnano-molar TSPO binding affinity with suitable lipophilicity for in vivo brain studies. After radiolabeling with fluorine-18, [18F]11a was used for a dynamic positron emission tomography (PET) study in a rat LPS-induced neuroinflammation model; the inflammatory lesion was clearly visualized with a superior target-to-background ratio compared to [18F]DPA-714. An immunohistochemical examination of the dissected brains confirmed that the uptake location of [18F]11a in the PET study was consistent with a positively activated microglia region. This study proved that [18F]11a could be employed as a potential PET tracer for detecting neuroinflammation and could give possibility for diagnosis of other diseases, such as cancers related with TSPO expression.
Collapse
Affiliation(s)
- Van Hieu Tran
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Jaekyung Park
- Gachon Advanced Institute for Health Sciences and Technology, Graduate School, Gachon University, Incheon 21936, Republic of Korea
| | - Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon 16229, Republic of Korea
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea; Gachon Advanced Institute for Health Sciences and Technology, Graduate School, Gachon University, Incheon 21936, Republic of Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju 54907, Republic of Korea.
| |
Collapse
|
8
|
Fujinaga M, Kumata K, Zhang Y, Hatori A, Yamasaki T, Mori W, Ohkubo T, Xie L, Nengaki N, Zhang MR. Synthesis of two novel [ 18F]fluorobenzene-containing radiotracers via spirocyclic iodonium ylides and positron emission tomography imaging of translocator protein (18 kDa) in ischemic brain. Org Biomol Chem 2019; 16:8325-8335. [PMID: 30206613 DOI: 10.1039/c8ob01700j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two novel radiotracers, namely, N-(4-[18F]fluorobenzyl)-N-methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([18F]5) and 2-(5-(4-[18F]fluorophenyl)-2-oxobenzo[d]oxazol-3(2H)-yl)-N-methyl-N-phenylacetamide ([18F]6), were developed for positron emission tomography (PET) imaging of translocator protein (18 kDa) (TSPO) in ischemic brain in this study. The two radiotracers with a [18F]fluorobenzene ring were derived from the corresponding [18F]fluoroethyl tracers [18F]7 and [18F]8 which underwent [18F]defluoroethylation in vivo easily. [18F]5 or [18F]6 was synthesized by the radiofluorination of the spirocyclic iodonium ylide precursor 10 or 17 with [18F]F- in 23 ± 10% (n = 7) or 56 ± 9% (n = 7) radiochemical yields (decay-corrected, based on [18F]F-). [18F]5 and [18F]6 showed high in vitro binding affinities (Ki = 0.70 nM and 5.9 nM) for TSPO and moderate lipophilicities (log D = 2.9 and 3.4). Low uptake of radioactivity for both radiotracers was observed in mouse bones. Metabolite analysis showed that the in vivo stability of [18F]5 and [18F]6 was improved in comparison to the parent radiotracers [18F]7 and [18F]8. In particular, no radiolabelled metabolite of [18F]5 was found in the mouse brains at 60 min after the radiotracer injection. PET studies with [18F]5 on ischemic rat brains revealed a higher binding potential (BPND = 3.42) and maximum uptake ratio (4.49) between the ipsilateral and contralateral sides. Thus, [18F]5 was shown to be a useful PET radiotracer for visualizing TSPO in neuroinflammation models.
Collapse
Affiliation(s)
- Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kumata K, Zhang Y, Fujinaga M, Ohkubo T, Mori W, Yamasaki T, Hanyu M, Xie L, Hatori A, Zhang MR. [ 18F]DAA1106: Automated radiosynthesis using spirocyclic iodonium ylide and preclinical evaluation for positron emission tomography imaging of translocator protein (18 kDa). Bioorg Med Chem 2018; 26:4817-4822. [PMID: 30166255 DOI: 10.1016/j.bmc.2018.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/11/2018] [Accepted: 08/11/2018] [Indexed: 02/07/2023]
Abstract
DAA1106 (N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide), is a potent and selective ligand for the translocator protein (18 kDa, TSPO) in brain mitochondrial fractions of rats and monkey (Ki = 0.043 and 0.188 nM, respectively). In this study, to translate [18F]DAA1106 for clinical studies, we performed automated syntheses of [18F]DAA1106 using the spirocyclic iodonium ylide (1) as a radiolabelling precursor and conducted preclinical studies including positron emission tomography (PET) imaging of TSPO in ischemic rat brains. Radiofluorination of the ylide precursor 1 with [18F]F-, followed by HPLC separation and formulation, produced the [18F]DAA1106 solution for injection in 6% average (n = 10) radiochemical yield (based on [18F]F-) with >98% radiochemical purity and molar activity of 60-100 GBq/μmol at the end of synthesis. The synthesis time was 87 min from the end of bombardment. The automated synthesis achieved [18F]DAA1106 with sufficient radioactivity available for preclinical and clinical use. Biodistribution study of [18F]DAA1106 showed a low uptake of radioactivity in the mouse bones. Metabolite analysis showed that >96% of total radioactivity in the mouse brain at 60 min after the radiotracer injection was unmetabolized [18F]DAA1106. PET study of ischemic rat brains visualized ischemic areas with a high uptake ratio (1.9 ± 0.3) compared with the contralateral side. We have provided evidence that [18F]DAA1106 could be routinely produced for clinical studies.
Collapse
Affiliation(s)
- Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takayuki Ohkubo
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service Co., 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masayuki Hanyu
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
10
|
Fisher MJ, McMurray L, Lu S, Morse CL, Liow JS, Zoghbi SS, Kowalski A, Tye GL, Innis RB, Aigbirhio FI, Pike VW. [Carboxyl- 11 C]Labelling of Four High-Affinity cPLA2α Inhibitors and Their Evaluation as Radioligands in Mice by Positron Emission Tomography. ChemMedChem 2018; 13:138-146. [PMID: 29232493 DOI: 10.1002/cmdc.201700697] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/11/2017] [Indexed: 01/23/2023]
Abstract
Cytosolic phospholipase A2α (cPLA2α) may play a critical role in neuropsychiatric and neurodegenerative disorders associated with oxidative stress and neuroinflammation. An effective PET radioligand for imaging cPLA2α in living brain might prove useful for biomedical research, especially on neuroinflammation. We selected four high-affinity (IC50 2.1-12 nm) indole-5-carboxylic acid-based inhibitors of cPLA2α, namely 3-isobutyryl-1-(2-oxo-3-(4-phenoxyphenoxy)propyl)-1H-indole-5-carboxylic acid (1); 3-acetyl-1-(2-oxo-3-(4-(4-(trifluoromethyl)phenoxy)phenoxy)propyl)-1H-indole-5-carboxylic acid (2); 3-(3-methyl-1,2,4-oxadiazol-5-yl)-1-(2-oxo-3-(4-phenoxyphenoxy)propyl)-1H-indole-5-carboxylic acid (3); and 3-(3-methyl-1,2,4-oxadiazol-5-yl)-1-(3-(4-octylphenoxy)-2-oxopropyl)-1H-indole-5-carboxylic acid (4), for labelling in carboxyl position with carbon-11 (t1/2 =20.4 min) to provide candidate PET radioligands for imaging brain cPLA2α. Compounds [11 C]1-4 were obtained for intravenous injection in adequate overall yields (1.1-5.5 %) from cyclotron-produced [11 C]carbon dioxide and with moderate molar activities (70-141 GBq μmol-1 ) through the use of Pd0 -mediated [11 C]carbon monoxide insertion on iodo precursors. Measured logD7.4 values were within a narrow moderate range (1.9-2.4). After intravenous injection of [11 C]1-4 in mice, radioactivity uptakes in brain peaked at low values (≤0.8 SUV) and decreased by about 90 % over 15 min. Pretreatments of the mice with high doses of the corresponding non-radioactive ligands did not alter brain time-activity curves. Brain uptakes of radioactivity after administration of [11 C]1 to wild-type and P-gp/BCRP dual knock-out mice were similar (peak 0.4 vs. 0.5 SUV), indicating that [11 C]1 and others in this structural class, are not substrates for efflux transporters.
Collapse
Affiliation(s)
- Martin J Fisher
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Lindsay McMurray
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Aneta Kowalski
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - George L Tye
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| | - Franklin I Aigbirhio
- Molecular Imaging Chemistry Laboratory, Wolfson Brain Imaging Centre, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Room B3C346, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Wang L, Cheng R, Fujinaga M, Yang J, Zhang Y, Hatori A, Kumata K, Yang J, Vasdev N, Du Y, Ran C, Zhang MR, Liang SH. A Facile Radiolabeling of [ 18F]FDPA via Spirocyclic Iodonium Ylides: Preliminary PET Imaging Studies in Preclinical Models of Neuroinflammation. J Med Chem 2017; 60:5222-5227. [PMID: 28530834 DOI: 10.1021/acs.jmedchem.7b00432] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A suitable TSPO PET ligand may visualize and quantify neuroinflammation in a living brain. Herein we report a 18F-ligand, [18F]2 ([18F]FDPA), is radiolabeled in high yield and high specific activity based on our spirocyclic iodonium ylide (SCIDY) strategy. [18F]2 demonstrated saturable specific binding to TSPO, substantially elevated brain uptake, and slow washout of bound PET signal in the preclinical models of brain neuroinflammation (cerebral ischemia and Alzheimer's disease).
Collapse
Affiliation(s)
- Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Ran Cheng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02114, United States.,School of Pharmaceutical Science and Technology, Tianjin University , 92 Weijin Road, Nankai District, Tianjin, China
| | - Masayuki Fujinaga
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555, Japan
| | - Jian Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02129, United States
| | - Yiding Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555, Japan
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02129, United States
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University , 92 Weijin Road, Nankai District, Tianjin, China
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02129, United States
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555, Japan
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02114, United States
| |
Collapse
|
12
|
Foss CA, Liu L, Mease RC, Wang H, Pasricha P, Pomper MG. Imaging Macrophage Accumulation in a Murine Model of Chronic Pancreatitis with 125I-Iodo-DPA-713 SPECT/CT. J Nucl Med 2017; 58:1685-1690. [PMID: 28522739 DOI: 10.2967/jnumed.117.189571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022] Open
Abstract
Pancreatitis remains a diagnostic challenge in patients with mild to moderate disease, with current imaging modalities being inadequate. Given the prominent macrophage infiltration in chronic pancreatitis, we hypothesized that 125I-iodo-DPA-713, a small-molecule radiotracer that specifically targets macrophages, could be used with SPECT/CT to image pancreatic inflammation in a relevant experimental model. Methods: Chronic pancreatitis was induced with cerulein in C57BL/6 mice, which were contrasted with saline-injected control mice. The animals were imaged at 7 wk after induction using N,N-diethyl-2-(2-(3-125I-iodo-4-methoxyphenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide (125I-iodo-DPA-713) SPECT/CT or 18F-FDG PET/CT. The biodistribution of 125I-iodo-DPA-713 was determined under the same conditions, and a pair of mice was imaged using a fluorescent analog of 125I-iodo-DPA-713, DPA-713-IRDye800CW, for correlative histology. Results: Pancreatic 125I-iodo-DPA-713 uptake was significantly higher in treated mice than control mice (5.17% ± 1.18% vs. 2.41% ± 0.34% injected dose/g, P = 0.02), as corroborated by imaging. Mice imaged with 18F-FDG PET/CT showed cerulein-enhanced pancreatic uptake in addition to a moderate signal from healthy pancreas. Near-infrared fluorescence imaging with DPA-713-IRDye800CW showed strong pancreatic uptake, focal liver uptake, and gastrointestinal uptake in the treated mice, whereas the control mice showed only urinary excretion. Ex vivo fluorescence microscopy revealed a large influx of macrophages in the pancreas colocalizing with the retained fluorescent probe in the treated but not the control mice. Conclusion: These data support the application of both 125I-iodo-DPA-713 SPECT/CT and DPA-713-IRDye800CW near-infrared fluorescence to delineate pancreatic, liver, or intestinal inflammation in living mice.
Collapse
Affiliation(s)
- Catherine A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Liansheng Liu
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Ronnie C Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Haofan Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Pankaj Pasricha
- Center for Neurogastroenterology, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| |
Collapse
|
13
|
Fujinaga M, Luo R, Kumata K, Zhang Y, Hatori A, Yamasaki T, Xie L, Mori W, Kurihara Y, Ogawa M, Nengaki N, Wang F, Zhang MR. Development of a 18F-Labeled Radiotracer with Improved Brain Kinetics for Positron Emission Tomography Imaging of Translocator Protein (18 kDa) in Ischemic Brain and Glioma. J Med Chem 2017; 60:4047-4061. [PMID: 28422499 DOI: 10.1021/acs.jmedchem.7b00374] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We designed four novel acetamidobenzoxazolone compounds 7a-d as candidates for positron emission tomography (PET) radiotracers for imaging the translocator protein (18 kDa, TSPO) in ischemic brain and glioma. Among these compounds, 2-(5-(6-fluoropyridin-3-yl)-2-oxobenzo[d]oxazol-3(2H)-yl)-N-methyl-N-phenylacetamide (7d) exhibited high binding affinity (Ki = 13.4 nM) with the TSPO and moderate lipophilicity (log D = 1.92). [18F]7d was radiosynthesized by [18F]fluorination of the bromopyridine precursor 7h with [18F]F- in 12 ± 5% radiochemical yield (n = 6, decay-corrected). In vitro autoradiography and PET studies of ischemic rat brain revealed higher binding of [18F]7d with TSPO on the ipsilateral side, as compared to the contralateral side, and improved brain kinetics compared with our previously developed radiotracers. Metabolite study of [18F]7d showed 93% of unchanged form in the ischemic brain at 30 min after injection. Moreover, PET study with [18F]7d provided a clear tumor image in a glioma-bearing rat model. We demonstrated that [18F]7d is a useful PET radiotracer for visualizing not only neuroinflammation but also glioma and will translate this radiotracer to a "first-in-human" study in our facility.
Collapse
Affiliation(s)
- Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Rui Luo
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University , 68 Chanle Road, Nanjing 210006, China
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yusuke Kurihara
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service Co. , 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Masanao Ogawa
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service Co. , 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Nobuki Nengaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,SHI Accelerator Service Co. , 1-17-6 Osaki, Shinagawa-ku, Tokyo 141-0032, Japan
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University , 68 Chanle Road, Nanjing 210006, China
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
14
|
Draxler J, Martinelli E, Weinberg AM, Zitek A, Irrgeher J, Meischel M, Stanzl-Tschegg SE, Mingler B, Prohaska T. The potential of isotopically enriched magnesium to study bone implant degradation in vivo. Acta Biomater 2017; 51:526-536. [PMID: 28111338 DOI: 10.1016/j.actbio.2017.01.054] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022]
Abstract
This pilot study highlights the substantial potential of using isotopically enriched (non-radioactive) metals to study the fate of biodegradable metal implants. It was possible to show that magnesium (Mg) release can be observed by combining isotopic mass spectrometry and isotopic pattern deconvolution for data reduction, even at low amounts of Mg released a from slowly degrading 26Mg enriched (>99%) Mg metal. Following implantation into rats, structural in vivo changes were monitored by μCT. Results showed that the applied Mg had an average degradation rate of 16±5μmyear-1, which corresponds with the degradation rate of pure Mg. Bone and tissue extraction was performed 4, 24, and 52weeks after implantation. Bone cross sections were analyzed by laser ablation inductively coupled plasma mass spectrometry (ICP-MS) to determine the lateral 26Mg distribution. The 26Mg/24Mg ratios in digested tissue and excretion samples were analyzed by multi collector ICP-MS. Isotope pattern deconvolution in combination with ICP-MS enabled detection of Mg pin material in amounts as low as 200ppm in bone tissues and 20ppm in tissues up to two fold increased Mg levels with a contribution of pin-derived Mg of up to 75% (4weeks) and 30% (24weeks) were found adjacent to the implant. After complete degradation, no visual bone disturbance or residual pin-Mg could be detected in cortical bone. In organs, increased Δ26Mg/24Mg values up to 16‰ were determined compared to control samples. Increased Δ26Mg/24Mg values were detected in serum samples at a constant total Mg level. In contrast to urine, feces did not show a shift in the 26Mg/24Mg ratios. This investigation showed that the organism is capable of handling excess Mg well and that bones fully recover after degradation. STATEMENT OF SIGNIFICANCE Magnesium alloys as bone implants have faced increasing attention over the past years. In vivo degradation and metabolism studies of these implant materials have shown the promising application in orthopaedic trauma surgery. With advance in Mg research it has become increasingly important to monitor the fate of the implant material in the organism. For the first time, the indispensible potential of isotopically enriched materials is documented by applying 26Mg enriched Mg implants in an animal model. Therefore, the spatial distribution of pin-Mg in bone and the pin-Mg migration and excretion in the organism could be monitored to better understand metal degradation as well as Mg turn over and excretion.
Collapse
|
15
|
Evaluation of PET Imaging Performance of the TSPO Radioligand [18F]DPA-714 in Mouse and Rat Models of Cancer and Inflammation. Mol Imaging Biol 2016; 18:127-34. [PMID: 26194010 PMCID: PMC4722075 DOI: 10.1007/s11307-015-0877-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose Many radioligands have been explored for imaging the 18-kDa translocator protein (TSPO), a diagnostic and therapeutic target for inflammation and cancer. Here, we investigated the TSPO radioligand [18F]DPA-714 for positron emission tomography (PET) imaging of cancer and inflammation. Procedures [18F]DPA-714 PET imaging was performed in 8 mouse and rat models of breast and brain cancer and 4 mouse and rat models of muscular and bowel inflammation. Results [18F]DPA-714 showed different uptake levels in healthy organs and malignant tissues of mice and rats. Although high and displaceable [18F]DPA-714 binding is observed ex vivo, TSPO-positive PET imaging of peripheral lesions of cancer and inflammation in mice did not show significant lesion-to-background signal ratios. Slower [18F]DPA-714 metabolism and muscle clearance in mice compared to rats may explain the elevated background signal in peripheral organs in this species. Conclusion Although TSPO is an evolutionary conserved protein, inter- and intra-species differences call for further exploration of the pharmacological parameters of TSPO radioligands. Electronic supplementary material The online version of this article (doi:10.1007/s11307-015-0877-x) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Emma MG, Lombardo M, Trombini C, Quintavalla A. The Organocatalytic α-Fluorination of Chiral γ-Nitroaldehydes: the Challenge of Facing the Construction of a Quaternary Fluorinated Stereocenter. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marco Giuseppe Emma
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Claudio Trombini
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Arianna Quintavalla
- Department of Chemistry “G. Ciamician”; Alma Mater Studiorum; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
17
|
Fricke IB, Viel T, Worlitzer MM, Collmann FM, Vrachimis A, Faust A, Wachsmuth L, Faber C, Dollé F, Kuhlmann MT, Schäfers K, Hermann S, Schwamborn JC, Jacobs AH. 6-hydroxydopamine-induced Parkinson's disease-like degeneration generates acute microgliosis and astrogliosis in the nigrostriatal system but no bioluminescence imaging-detectable alteration in adult neurogenesis. Eur J Neurosci 2016; 43:1352-65. [PMID: 26950181 DOI: 10.1111/ejn.13232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/22/2022]
Abstract
Parkinson's disease is a slowly progressing neurodegenerative disorder caused by loss of dopaminergic neurons in the substantia nigra (SN), leading to severe impairment in motor and non-motor functions. Endogenous subventricular zone (SVZ) neural stem cells constantly give birth to new cells that might serve as a possible source for regeneration in the adult brain. However, neurodegeneration is accompanied by neuroinflammation and dopamine depletion, potentially compromising regeneration. We therefore employed in vivo imaging methods to study striatal deafferentation (N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-[(123) I]iodophenyl)nortropane single photon emission computed tomography, DaTscan(™) ) and neuroinflammation in the SN and striatum (N,N-diethyl-2-(2-(4-(2-[(18) F]fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide positron emission tomography, [(18) F]DPA-714 PET) in the intranigral 6-hydroxydopamine Parkinson's disease mouse model. Additionally, we transduced cells in the SVZ with a lentivirus encoding firefly luciferase and followed migration of progenitor cells in the SVZ-olfactory bulb axis via bioluminescence imaging under disease and control conditions. We found that activation of microglia in the SN is an acute process accompanying the degeneration of dopaminergic cell bodies in the SN. Dopaminergic deafferentation of the striatum does not influence the generation of doublecortin-positive neuroblasts in the SVZ, but generates chronic astrogliosis in the nigrostriatal system.
Collapse
Affiliation(s)
- Inga B Fricke
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany.,ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, University of Münster, Münster, Germany
| | - Thomas Viel
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany
| | - Maik M Worlitzer
- ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, University of Münster, Münster, Germany
| | - Franziska M Collmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany
| | - Alexis Vrachimis
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Andreas Faust
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany.,DFG EXC 1003, Cluster of Excellence 'Cells in Motion', Münster, Germany
| | - Frédéric Dollé
- CEA, I2BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Michael T Kuhlmann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany
| | - Klaus Schäfers
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany.,DFG EXC 1003, Cluster of Excellence 'Cells in Motion', Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany.,DFG EXC 1003, Cluster of Excellence 'Cells in Motion', Münster, Germany
| | - Jens C Schwamborn
- ZMBE, Institute of Cell Biology, Stem Cell Biology and Regeneration Group, University of Münster, Münster, Germany.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Belval, Luxembourg
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Waldeyerstraße 15, D-48149, Münster, Germany.,DFG EXC 1003, Cluster of Excellence 'Cells in Motion', Münster, Germany.,Department of Geriatric Medicine, Evangelische Kliniken, Johanniter Krankenhaus, Bonn, Germany
| |
Collapse
|
18
|
Declercq LD, Vandenberghe R, Van Laere K, Verbruggen A, Bormans G. Drug Development in Alzheimer's Disease: The Contribution of PET and SPECT. Front Pharmacol 2016; 7:88. [PMID: 27065872 PMCID: PMC4814730 DOI: 10.3389/fphar.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review.
Collapse
Affiliation(s)
- Lieven D Declercq
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
19
|
Social Stress and Psychosis Risk: Common Neurochemical Substrates? Neuropsychopharmacology 2016; 41:666-74. [PMID: 26346639 PMCID: PMC4707841 DOI: 10.1038/npp.2015.274] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022]
Abstract
Environmental risk factors have been implicated in the etiology of psychotic disorders, with growing evidence showing the adverse effects of migration, social marginalization, urbanicity, childhood trauma, social defeat, and other adverse experiences on mental health in vulnerable populations. Collectively, social stress may be one mechanism that could link these environmental risk factors. The exact mechanism(s) by which social stress can affect brain function, and in particular the molecular targets involved in psychosis (such as the dopaminergic (DA) system), is (are) not fully understood. In this review, we will discuss the interplay between social environmental risk factors and molecular changes in the human brain; in particular, we will highlight the impact of social stress on three specific neurochemical systems: DA, neuroinflammation/immune, and endocannabinoid (eCB) signaling. We have chosen the latter two molecular pathways based on emerging evidence linking schizophrenia to altered neuroinflammatory processes and cannabis use. We further identify key developmental periods in which social stress interacts with these pathways, suggesting window(s) of opportunities for novel interventions. Taken together, we suggest that they may have a key role in the pathogenesis and disease progression, possibly provide novel treatment options for schizophrenia, and perhaps even prevent it.
Collapse
|
20
|
Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BNM, Lammertsma AA, Windhorst AD. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochim Biophys Acta Mol Basis Dis 2015; 1862:425-41. [PMID: 26643549 DOI: 10.1016/j.bbadis.2015.11.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is thought to play a pivotal role in many diseases affecting the brain, including Alzheimer's disease, multiple sclerosis and stroke. Neuroinflammation is characterised predominantly by microglial activation, which can be visualised using positron emission tomography (PET). Traditionally, translocator protein 18kDa (TSPO) is the target for imaging of neuroinflammation using PET. In this review, recent preclinical and clinical research using PET in Alzheimer's disease, multiple sclerosis and stroke is summarised. In addition, new molecular targets for imaging of neuroinflammation, such as monoamine oxidases, adenosine receptors and cannabinoid receptor type 2, are discussed. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Uta Funke
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | - Ger T Molenaar
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | | | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Blair A, Zmuda F, Malviya G, Tavares AAS, Tamagnan GD, Chalmers AJ, Dewar D, Pimlott SL, Sutherland A. A novel 18F-labelled high affinity agent for PET imaging of the translocator protein. Chem Sci 2015; 6:4772-4777. [PMID: 29142713 PMCID: PMC5667507 DOI: 10.1039/c5sc01647a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 11/21/2022] Open
Abstract
The translocator protein (TSPO) is an important target for imaging focal neuroinflammation in diseases such as brain cancer, stroke and neurodegeneration, but current tracers for non-invasive imaging of TSPO have important limitations. We present the synthesis and evaluation of a novel 3-fluoromethylquinoline-2-carboxamide, AB5186, which was prepared in eight steps using a one-pot two component indium(iii)-catalysed reaction for the rapid and efficient assembly of the 4-phenylquinoline core. Biological assessment and the implementation of a physicochemical study showed AB5186 to have low nanomolar affinity for TSPO, as well as optimal plasma protein binding and membrane permeability properties. Generation of [18F]-AB5186 through 18F incorporation was achieved in good radiochemical yield and subsequent in vitro and ex vivo autoradiography revealed the ability of this compound to bind with specificity to TSPO in mouse glioblastoma xenografts. Initial positron emission tomography imaging of a glioma bearing mouse and a healthy baboon support the potential for [18F]-AB5186 use as a radiotracer for non-invasive TSPO imaging in vivo.
Collapse
Affiliation(s)
- Adele Blair
- WestCHEM , School of Chemistry , University of Glasgow , The Joseph Black Building , Glasgow G12 8QQ , UK . ; ; Tel: +44 (0)141 330 5936
| | - Filip Zmuda
- WestCHEM , School of Chemistry , University of Glasgow , The Joseph Black Building , Glasgow G12 8QQ , UK . ; ; Tel: +44 (0)141 330 5936
- Wolfson Whol Cancer Research Centre , Institute of Cancer Sciences , University of Glasgow , Glasgow G61 1QH , UK
| | - Gaurav Malviya
- Nuclear Imaging Facility , The Beatson Institute for Cancer Research , Glasgow G61 1BD , UK
| | - Adriana A S Tavares
- Molecular NeuroImaging, and LLC , 60 Temple Street , New Haven , Connecticut , USA
| | - Gilles D Tamagnan
- Molecular NeuroImaging, and LLC , 60 Temple Street , New Haven , Connecticut , USA
| | - Anthony J Chalmers
- Wolfson Whol Cancer Research Centre , Institute of Cancer Sciences , University of Glasgow , Glasgow G61 1QH , UK
| | - Deborah Dewar
- Institute of Neuroscience and Psychology , College of Medical , Veterinary and Life Sciences , University of Glasgow , Glasgow G12 8QQ , UK
| | - Sally L Pimlott
- West of Scotland Radionuclide Dispensary , University of Glasgow and North Glasgow University Hospital NHS Trust , Glasgow G11 6NT , UK
| | - Andrew Sutherland
- WestCHEM , School of Chemistry , University of Glasgow , The Joseph Black Building , Glasgow G12 8QQ , UK . ; ; Tel: +44 (0)141 330 5936
| |
Collapse
|
22
|
Damont A, Marguet F, Puech F, Dollé F. Synthesis and in vitro characterization of novel fluorinated derivatives of the TSPO 18 kDa ligand SSR180575. Eur J Med Chem 2015. [DOI: 10.1016/j.ejmech.2015.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Mattner F, Quinlivan M, Greguric I, Pham T, Liu X, Jackson T, Berghofer P, Fookes CJR, Dikic B, Gregoire MC, Dolle F, Katsifis A. Radiosynthesis, In Vivo Biological Evaluation, and Imaging of Brain Lesions with [123I]-CLINME, a New SPECT Tracer for the Translocator Protein. DISEASE MARKERS 2015; 2015:729698. [PMID: 26199457 PMCID: PMC4496498 DOI: 10.1155/2015/729698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/10/2015] [Indexed: 11/17/2022]
Abstract
The high affinity translocator protein (TSPO) ligand 6-chloro-2-(4'-iodophenyl)-3-(N,N-methylethyl)imidazo[1,2-a]pyridine-3-acetamide (CLINME) was radiolabelled with iodine-123 and assessed for its sensitivity for the TSPO in rodents. Moreover neuroinflammatory changes on a unilateral excitotoxic lesion rat model were detected using SPECT imaging. [(123)I]-CLINME was prepared in 70-80% radiochemical yield. The uptake of [(123)I]-CLINME was evaluated in rats by biodistribution, competition, and metabolite studies. The unilateral excitotoxic lesion was performed by injection of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid unilaterally into the striatum. The striatum lesion was confirmed and correlated with TSPO expression in astrocytes and activated microglia by immunohistochemistry and autoradiography. In vivo studies with [(123)I]-CLINME indicated a biodistribution pattern consistent with TPSO distribution and the competition studies with PK11195 and Ro 5-4864 showed that [(123)I]-CLINME is selective for this site. The metabolite study showed that the extractable radioactivity was unchanged [(123)I]-CLINME in organs which expresses TSPO. SPECT/CT imaging on the unilateral excitotoxic lesion indicated that the mean ratio uptake in striatum (lesion:nonlesion) was 2.2. Moreover, TSPO changes observed by SPECT imaging were confirmed by immunofluorescence, immunochemistry, and autoradiography. These results indicated that [(123)I]-CLINME is a promising candidate for the quantification and visualization of TPSO expression in activated astroglia using SPECT.
Collapse
Affiliation(s)
- F. Mattner
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - M. Quinlivan
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - I. Greguric
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - T. Pham
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - X. Liu
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - T. Jackson
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - P. Berghofer
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - C. J. R. Fookes
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - B. Dikic
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - M.-C. Gregoire
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - F. Dolle
- CEA, DSV/I2BM, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - A. Katsifis
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
24
|
In vivo PET imaging of the α4β2 nicotinic acetylcholine receptor as a marker for brain inflammation after cerebral ischemia. J Neurosci 2015; 35:5998-6009. [PMID: 25878273 DOI: 10.1523/jneurosci.3670-14.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PET imaging of nicotinic acetylcholine receptors (nAChRs) could become an effective tool for the diagnosis and therapy evaluation of neurologic diseases. Despite this, the role of nAChRs α4β2 receptors after brain diseases such as cerebral ischemia and its involvement in inflammatory reaction is still largely unknown. To investigate this, we performed in parallel in vivo magnetic resonance imaging (MRI) and positron emission tomography (PET) with 2[(18)F]-fluoro-A85380 and [(11)C]PK11195 at 1, 3, 7, 14, 21, and 28 d after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with 2[(18)F]-fluoro-A85380 and [(11)C]PK11195 showed a progressive binding increase from days 3-7, followed by a progressive decrease from days 14-28 after cerebral ischemia onset. Ex vivo immunohistochemistry for the nicotinic α4β2 receptor and the mitochondrial translocator protein (18 kDa) (TSPO) confirmed the PET findings and demonstrated the overexpression of α4β2 receptors in both microglia/macrophages and astrocytes from days 7-28 after experimental ischemic stroke. Likewise, the role played by α4β2 receptors on neuroinflammation was supported by the increase of [(11)C]PK11195 binding in ischemic rats treated with the α4β2 antagonist dihydro-β-erythroidine hydrobromide (DHBE) at day 7 after MCAO. Finally, both functional and behavioral testing showed major impaired outcome at day 1 after ischemia onset, followed by a recovery of the sensorimotor function and dexterity from days 21-28 after experimental stroke. Together, these results suggest that the nicotinic α4β2 receptor could have a key role in the inflammatory reaction underlying cerebral ischemia in rats.
Collapse
|
25
|
Damont A, Garcia-Argote S, Buisson DA, Rousseau B, Dollé F. Efficient tritiation of the translocator protein (18 kDa) selective ligand DPA-714. J Labelled Comp Radiopharm 2015; 58:1-6. [DOI: 10.1002/jlcr.3252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Annelaure Damont
- CEA; DSV/I BM, Service Hospitalier Frédéric Joliot; 91401 Orsay France
| | - Sébastien Garcia-Argote
- CEA; DSV/iBiTec-S, Service de Chimie bioorganique et de Marquage; 91191 Gif-sur-Yvette France
| | - David-Alexandre Buisson
- CEA; DSV/iBiTec-S, Service de Chimie bioorganique et de Marquage; 91191 Gif-sur-Yvette France
| | - Bernard Rousseau
- CEA; DSV/iBiTec-S, Service de Chimie bioorganique et de Marquage; 91191 Gif-sur-Yvette France
| | - Frédéric Dollé
- CEA; DSV/I BM, Service Hospitalier Frédéric Joliot; 91401 Orsay France
| |
Collapse
|
26
|
Cornilleau T, Audrain H, Guillemet A, Hermange P, Fouquet E. General Last-Step Labeling of Biomolecule-Based Substrates by [12C], [13C], and [11C] Carbon Monoxide. Org Lett 2015; 17:354-7. [DOI: 10.1021/ol503471e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas Cornilleau
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351, Cours de la
Libération, 33405 Talence Cedex, France
| | - Hélène Audrain
- Department
of Nuclear Medicine and PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus, Denmark
| | - Aude Guillemet
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351, Cours de la
Libération, 33405 Talence Cedex, France
| | - Philippe Hermange
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351, Cours de la
Libération, 33405 Talence Cedex, France
| | - Eric Fouquet
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR-CNRS 5255, 351, Cours de la
Libération, 33405 Talence Cedex, France
| |
Collapse
|
27
|
Médran-Navarrete V, Bernards N, Kuhnast B, Damont A, Pottier G, Peyronneau MA, Kassiou M, Marguet F, Puech F, Boisgard R, Dollé F. [18F]DPA-C5yne, a novel fluorine-18-labelled analogue of DPA-714: radiosynthesis and preliminary evaluation as a radiotracer for imaging neuroinflammation with PET. J Labelled Comp Radiopharm 2014; 57:410-8. [PMID: 24764161 DOI: 10.1002/jlcr.3199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
Abstract
DPA-C5yne, the lead compound of a novel series of DPA-714 derivatives in which the fluoroethoxy chain linked to the phenylpyrazolopyrimidine scaffold has been replaced by a fluoroalkyn-1-yl moiety, is a high affinity (Ki : 0.35 nM) and selective ligand targeting the translocator protein 18 kDa. In the present work, DPA-C5yne was labelled with no-carrier-added [(18)F]fluoride based on a one-step tosyloxy-for-fluorine nucleophilic substitution reaction, purified by cartridge and HPLC, and formulated as an i.v. injectable solution using a TRACERLab FX N Pro synthesizer. Typically, 4.3-5.2 GBq of [(18)F]DPA-C5yne, ready-to-use, chemically and radiochemically pure (> 95%), was obtained with specific radioactivities ranging from 55 to 110 GBq/µmol within 50-60 min, starting from a 30 GBq [(18)F]fluoride batch (14-17%). LogP and LogD of [(18)F]DPA-C5yne were measured using the shake-flask method and values of 2.39 and 2.51 were found, respectively. Autoradiography studies performed on slices of ((R,S)-α-amino-3-hydroxy-5-methyl-4-isoxazolopropionique (AMPA)-lesioned rat brains showed a high target-to-background ratio (1.9 ± 0.3). Selectivity and specificity of the binding for the translocator protein was demonstrated using DPA-C5yne (unlabelled), PK11195 and Flumazenil (central benzodiazepine receptor ligand) as competitors. Furthermore, DPA-C5yne proved to be stable in plasma at 37°C for at least 90 min.
Collapse
|
28
|
Pottier G, Bernards N, Dollé F, Boisgard R. [¹⁸F]DPA-714 as a biomarker for positron emission tomography imaging of rheumatoid arthritis in an animal model. Arthritis Res Ther 2014; 16:R69. [PMID: 24621017 PMCID: PMC4060384 DOI: 10.1186/ar4508] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 02/17/2014] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic disease, affecting 0.5 to 1% of adults in industrialized countries, in which systemic inflammation and synovitis drive joint destruction. [¹⁸F]DPA-714 is a specific tracer of the 18 kDa translocator protein (TSPO), which is overexpressed on activated macrophages, and proposed as a biomarker of neuroinflammation. Today, diagnosis of patients with early inflammatory arthritis is limited by poor sensitivity and specificity. The present study aims to investigate the potential of [¹⁸F]DPA-714 to monitor in vivo inflammatory processes at a preclinical stage via positron emission tomography (PET). METHODS RA was induced in Dark Agouti rats by subcutaneous injection of inactivated Mycobacterium tuberculosis. Development of arthritis clinical signs was investigated daily and the severity of the disease evaluated. Animals were imaged at the peak of inflammation using [¹⁸F]DPA-714 and a small-animal PET-CT tomograph. RESULTS The first clinical signs appeared at 10 days post-injection, with a peak of inflammation at 20 days. At this time, PET-analyses showed a clear uptake of [¹⁸F]DPA-714 in swollen ankles, with mean values of 0.52 ± 0.18% injected dose (ID/cc) for treated (n = 11) and 0.19 ± 0.09 for non-treated (n = 6) rats. A good correlation between [¹⁸F]DPA-714's uptake and swelling was also found. Immunohistochemistry showed an enhanced TSPO expression in hind paws, mainly co-localized with the macrophages specific antigen CD68 expressing cells. CONCLUSION These preliminary results demonstrate that the TSPO 18 kDa specific radioligand [¹⁸F]DPA-714 is adapted for the study and follow-up of inflammation linked to RA in our experimental model, suggesting also a strong potential for clinical imaging of peripheral inflammation.
Collapse
|
29
|
Médran-Navarrete V, Damont A, Peyronneau MA, Kuhnast B, Bernards N, Pottier G, Marguet F, Puech F, Boisgard R, Dollé F. Preparation and evaluation of novel pyrazolo[1,5-a]pyrimidine acetamides, closely related to DPA-714, as potent ligands for imaging the TSPO 18kDa with PET. Bioorg Med Chem Lett 2014; 24:1550-6. [DOI: 10.1016/j.bmcl.2014.01.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/13/2022]
|
30
|
Holland JP, Liang SH, Rotstein BH, Collier TL, Stephenson NA, Greguric I, Vasdev N. Alternative approaches for PET radiotracer development in Alzheimer's disease: imaging beyond plaque. J Labelled Comp Radiopharm 2013; 57:323-31. [PMID: 24327420 DOI: 10.1002/jlcr.3158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) and related dementias show increasing clinical prevalence, yet our understanding of the etiology and pathobiology of disease-related neurodegeneration remains limited. In this regard, noninvasive imaging with radiotracers for positron emission tomography (PET) presents a unique tool for quantifying spatial and temporal changes in characteristic biological markers of brain disease and for assessing potential drug efficacy. PET radiotracers targeting different protein markers are being developed to address questions pertaining to the molecular and/or genetic heterogeneity of AD and related dementias. For example, radiotracers including [(11) C]-PiB and [(18) F]-AV-45 (Florbetapir) are being used to measure the density of Aβ-plaques in AD patients and to interrogate the biological mechanisms of disease initiation and progression. Our focus is on the development of novel PET imaging agents, targeting proteins beyond Aβ-plaques, which can be used to investigate the broader mechanism of AD pathogenesis. Here, we present the chemical basis of various radiotracers which show promise in preclinical or clinical studies for use in evaluating the phenotypic or biochemical characteristics of AD. Radiotracers for PET imaging neuroinflammation, metal ion association with Aβ-plaques, tau protein, cholinergic and cannabinoid receptors, and enzymes including glycogen-synthase kinase-3β and monoamine oxidase B amongst others, and their connection to AD are highlighted.
Collapse
Affiliation(s)
- Jason P Holland
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, 55 Fruit St., White 427, Boston, Massachusetts, 02114, USA; Life Sciences, Australian Nuclear Science and Technology Organisation, Kirrawee, New South Wales, 2232, Australia
| | | | | | | | | | | | | |
Collapse
|