1
|
Bodetko A, Chrzanowska J, Rydzanicz M, Borys-Iwanicka A, Karpinski P, Bladowska J, Ploski R, Smigiel R. Further Delineation of Clinical Phenotype of ZMYND11 Variants in Patients with Neurodevelopmental Dysmorphic Syndrome. Genes (Basel) 2024; 15:256. [PMID: 38397245 PMCID: PMC10888010 DOI: 10.3390/genes15020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Intellectual disability with speech delay and behavioural abnormalities, as well as hypotonia, seizures, feeding difficulties and craniofacial dysmorphism, are the main symptoms associated with pathogenic variants of the ZMYND11 gene. The range of clinical manifestations of the ZMYND phenotype is constantly being expanded by new cases described in the literature. Here, we present two previously unreported paediatric patients with neurodevelopmental challenges, who were diagnosed with missense variants in the ZMYND11 gene. It should be noted that one of the individuals manifested with hyperinsulinaemic hypoglycaemia (HH), a symptom that was not described before in published works. The reason for the occurrence of HH in our proband is not clear, so we try to explain the origin of this symptom in the context of the ZMYND11 syndrome. Thus, this paper contributes to knowledge on the range of possible manifestations of the ZMYND disease and provides further evidence supporting its association with neurodevelopmental challenges.
Collapse
Affiliation(s)
- Aleksandra Bodetko
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.B.); (R.S.)
| | - Joanna Chrzanowska
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.B.); (R.S.)
| | - Malgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (R.P.)
| | - Agnieszka Borys-Iwanicka
- Department of Paediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Joanna Bladowska
- Department of Radiology, Wroclaw 4th Military Clinical Hospital, Faculty of Medicine, Wroclaw University of Science and Technology, 53-114 Wroclaw, Poland;
- Department of Radiology and Imaging Diagnostics, Emergency Medicine Center, Marciniak Lower Silesian Specialist Hospital, 54-049 Wroclaw, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (R.P.)
| | - Robert Smigiel
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.B.); (R.S.)
| |
Collapse
|
2
|
Filareto I, Cinelli G, Scalabrini I, Caramaschi E, Bergonzini P, Spezia E, Todeschini A, Iughetti L. EIF2B2 gene mutation causing early onset vanishing white matter disease: a case report. Ital J Pediatr 2022; 48:128. [PMID: 35897042 PMCID: PMC9327270 DOI: 10.1186/s13052-022-01325-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Leukoencephalopathy with vanishing white matter (VWM) is an autosomal recessive neurological disease. The physiopathology of disease is still little understood, but it seems to involve impairment in maturation of astrocytes; as a consequence white matter is more prone to cellular stress. Disease is caused by mutations in five genes encoding subunits of the translation initiation factor eIF2B. We know five different types of VWM syndrome classified based different ages of onset (prenatal, infantile, childhood, juvenile and adult onset). Case presentation We report the case of a 4-month-old boy with early seizure onset, recurrent hypoglycemia and post mortem diagnosis of vanishing white matter disease (VMD). At the admission he presented suspected critical episodes, resolved after intravenous administration of benzodiazepines. The brain MRI showed total absence of myelination that suggested hypomyelination leukoencephalopathy. The whole exome sequencing (WES) revealed a variant of EIF2B2 gene (p. Val308Met) present in homozygosity. In this case report we also describe the clinical evolution of seizures, in fact the epileptic seizures had a polymorphic aspect, from several complex partial seizures secondarily generalized to status epilepticus. Conclusion Infantile and early childhood onset forms are associated with chronic progressive neurological signs, with episodes of rapid neurological worsening, and poor prognosis, with death in few months or years. Clinical presentation of epilepsy is poorly documented and do not include detailed information about the type, time of onset and severity of seizures. No therapeutic strategies for VWM disease have been reported.
Collapse
Affiliation(s)
- Ilaria Filareto
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo, 71 - 41124, Modena, Italy
| | - Giulia Cinelli
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo, 71 - 41124, Modena, Italy
| | - Ilaria Scalabrini
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo, 71 - 41124, Modena, Italy
| | - Elisa Caramaschi
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Largo del Pozzo, 71 - 41124, Modena, Italy
| | - Patrizia Bergonzini
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Largo del Pozzo, 71 - 41124, Modena, Italy
| | - Elisabetta Spezia
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Largo del Pozzo, 71 - 41124, Modena, Italy
| | - Alessandra Todeschini
- Department of Neuroradiology, University Hospital of Modena, Largo del Pozzo, Modena, 71 - 41124, Italy
| | - Lorenzo Iughetti
- Post Graduate School of Pediatrics, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, University of Modena and Reggio Emilia, Largo del Pozzo, 71 - 41124, Modena, Italy. .,Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, University of Modena and Reggio Emilia, Largo del Pozzo, 71 - 41124, Modena, Italy.
| |
Collapse
|
3
|
English AM, Green KM, Moon SL. A (dis)integrated stress response: Genetic diseases of eIF2α regulators. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1689. [PMID: 34463036 DOI: 10.1002/wrna.1689] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 01/28/2023]
Abstract
The integrated stress response (ISR) is a conserved mechanism by which eukaryotic cells remodel gene expression to adapt to intrinsic and extrinsic stressors rapidly and reversibly. The ISR is initiated when stress-activated protein kinases phosphorylate the major translation initiation factor eukaryotic translation initiation factor 2ɑ (eIF2ɑ), which globally suppresses translation initiation activity and permits the selective translation of stress-induced genes including important transcription factors such as activating transcription factor 4 (ATF4). Translationally repressed messenger RNAs (mRNAs) and noncoding RNAs assemble into cytoplasmic RNA-protein granules and polyadenylated RNAs are concomitantly stabilized. Thus, regulated changes in mRNA translation, stability, and localization to RNA-protein granules contribute to the reprogramming of gene expression that defines the ISR. We discuss fundamental mechanisms of RNA regulation during the ISR and provide an overview of a growing class of genetic disorders associated with mutant alleles of key translation factors in the ISR pathway. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease Translation > Translation Regulation RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Alyssa M English
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katelyn M Green
- Department of Chemistry, Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie L Moon
- Department of Human Genetics, Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Read RW, Schlauch KA, Lombardi VC, Cirulli ET, Washington NL, Lu JT, Grzymski JJ. Genome-Wide Identification of Rare and Common Variants Driving Triglyceride Levels in a Nevada Population. Front Genet 2021; 12:639418. [PMID: 33763119 PMCID: PMC7982958 DOI: 10.3389/fgene.2021.639418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 01/08/2023] Open
Abstract
Clinical conditions correlated with elevated triglyceride levels are well-known: coronary heart disease, hypertension, and diabetes. Underlying genetic and phenotypic mechanisms are not fully understood, partially due to lack of coordinated genotypic-phenotypic data. Here we use a subset of the Healthy Nevada Project, a population of 9,183 sequenced participants with longitudinal electronic health records to examine consequences of altered triglyceride levels. Specifically, Healthy Nevada Project participants sequenced by the Helix Exome+ platform were cross-referenced to their electronic medical records to identify: (1) rare and common single-variant genome-wide associations; (2) gene-based associations using a Sequence Kernel Association Test; (3) phenome-wide associations with triglyceride levels; and (4) pleiotropic variants linked to triglyceride levels. The study identified 549 significant single-variant associations (p < 8.75 × 10-9), many in chromosome 11's triglyceride hotspot: ZPR1, BUD13, APOC3, APOA5. A well-known protective loss-of-function variant in APOC3 (R19X) was associated with a 51% decrease in triglyceride levels in the cohort. Sixteen gene-based triglyceride associations were identified; six of these genes surprisingly did not include a single variant with significant associations. Results at the variant and gene level were validated with the UK Biobank. The combination of a single-variant genome-wide association, a gene-based association method, and phenome wide-association studies identified rare and common variants, genes, and phenotypes associated with elevated triglyceride levels, some of which may have been overlooked with standard approaches.
Collapse
Affiliation(s)
- Robert W. Read
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Karen A. Schlauch
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| | | | | | - James T. Lu
- Helix Opco, LLC., San Mateo, CA, United States
| | - Joseph J. Grzymski
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, United States
- Renown Health, Reno, NV, United States
| |
Collapse
|
5
|
Bursle C, Yiu EM, Yeung A, Freeman JL, Stutterd C, Leventer RJ, Vanderver A, Yaplito‐Lee J. Hyperinsulinaemic hypoglycaemia: A rare association of vanishing white matter disease. JIMD Rep 2020; 51:11-16. [PMID: 32071834 PMCID: PMC7012737 DOI: 10.1002/jmd2.12081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/18/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023] Open
Abstract
We report two unrelated patients with infantile onset leukoencephalopathy with vanishing white matter (VWM) and hyperinsulinaemic hypoglycaemia. To our knowledge, this association has not been described previously. Both patients had compound heterozygous pathogenic variants in EIF2B4 detected on exome sequencing and absence of other variants which might explain the hyperinsulinism. Hypoglycaemia became apparent at 6 and 8 months, respectively, although in one patient, transient neonatal hypoglycaemia was also documented. One patient responded to diazoxide and the other was managed with continuous nasogastric feeding. We hypothesise that the pathophysiology of hyperinsulinism in VWM may involve dysregulation of transcription of genes related to insulin secretion.
Collapse
Affiliation(s)
- Carolyn Bursle
- Department of Metabolic MedicineRoyal Children's HospitalMelbourneAustralia
| | - Eppie M. Yiu
- Department of NeurologyRoyal Children's HospitalMelbourneAustralia
- Murdoch Children's Research InstituteMelbourneAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Alison Yeung
- Murdoch Children's Research InstituteMelbourneAustralia
- Victorian Clinical Genetics ServiceMelbourneAustralia
| | - Jeremy L. Freeman
- Department of NeurologyRoyal Children's HospitalMelbourneAustralia
- Murdoch Children's Research InstituteMelbourneAustralia
| | - Chloe Stutterd
- Murdoch Children's Research InstituteMelbourneAustralia
- Victorian Clinical Genetics ServiceMelbourneAustralia
| | - Richard J. Leventer
- Department of NeurologyRoyal Children's HospitalMelbourneAustralia
- Murdoch Children's Research InstituteMelbourneAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneAustralia
| | - Adeline Vanderver
- Victorian Clinical Genetics ServiceMelbourneAustralia
- Neurology DepartmentChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Joy Yaplito‐Lee
- Department of Metabolic MedicineRoyal Children's HospitalMelbourneAustralia
| |
Collapse
|