1
|
Bukreeva I, Gulimova VI, Krivonosov YS, Buzmakov AV, Junemann O, Cedola A, Fratini M, Maugeri L, Begani Provinciali G, Palermo F, Sanna A, Pieroni N, Asadchikov VE, Saveliev SV. The Study of the Caudal Vertebrae of Thick-Toed Geckos after a Prolonged Space Flight by X-ray Phase-Contrast Micro-CT. Cells 2023; 12:2415. [PMID: 37830629 PMCID: PMC10572532 DOI: 10.3390/cells12192415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
The proximal caudal vertebrae and notochord in thick-toed geckos (TG) (Chondrodactylus turneri, Gray, 1864) were investigated after a 30-day space flight onboard the biosatellite Bion-M1. This region has not been explored in previous studies. Our research focused on finding sites most affected by demineralization caused by microgravity (G0). We used X-ray phase-contrast tomography to study TG samples without invasive prior preparation to clarify our previous findings on the resistance of TG's bones to demineralization in G0. The results of the present study confirmed that geckos are capable of preserving bone mass after flight, as neither cortical nor trabecular bone volume fraction showed statistically significant changes after flight. On the other hand, we observed a clear decrease in the mineralization of the notochordal septum and a substantial rise in intercentrum volume following the flight. To monitor TG's mineral metabolism in G0, we propose to measure the volume of mineralized tissue in the notochordal septum. This technique holds promise as a sensitive approach to track the demineralization process in G0, given that the volume of calcification within the septum is limited, making it easy to detect even slight changes in mineral content.
Collapse
Affiliation(s)
- Inna Bukreeva
- Institute of Nanotechnology, CNR, Rome Unit, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.B.); (O.J.); (A.C.); (M.F.)
- P.N. Lebedev Physical Institute Russian Academy of Sciences, Leninskiy Prospekt 53, 119991 Moscow, Russia
| | - Victoria I. Gulimova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Tsyurupy Str. 3, 117418 Moscow, Russia;
| | - Yuri S. Krivonosov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Leninskiy Prospekt 59, 119333 Moscow, Russia (V.E.A.)
| | - Alexey V. Buzmakov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Leninskiy Prospekt 59, 119333 Moscow, Russia (V.E.A.)
| | - Olga Junemann
- Institute of Nanotechnology, CNR, Rome Unit, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.B.); (O.J.); (A.C.); (M.F.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Tsyurupy Str. 3, 117418 Moscow, Russia;
| | - Alessia Cedola
- Institute of Nanotechnology, CNR, Rome Unit, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.B.); (O.J.); (A.C.); (M.F.)
| | - Michela Fratini
- Institute of Nanotechnology, CNR, Rome Unit, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.B.); (O.J.); (A.C.); (M.F.)
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306/354, 00142 Roma, Italy
| | - Laura Maugeri
- IRCCS Fondazione Santa Lucia, Via Ardeatina 306/354, 00142 Roma, Italy
| | - Ginevra Begani Provinciali
- Institute of Nanotechnology, CNR, Rome Unit, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.B.); (O.J.); (A.C.); (M.F.)
- Physics Department, ‘Sapienza’ University, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Laboratoire d’Optique Appliquée, CNRS, ENSTA Paris, Ecole Polytechnique IP Paris, 91120 Palaiseau, France
| | - Francesca Palermo
- Institute of Nanotechnology, CNR, Rome Unit, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.B.); (O.J.); (A.C.); (M.F.)
| | - Alessia Sanna
- Institute of Nanotechnology, CNR, Rome Unit, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.B.); (O.J.); (A.C.); (M.F.)
| | - Nicola Pieroni
- Institute of Nanotechnology, CNR, Rome Unit, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.B.); (O.J.); (A.C.); (M.F.)
| | - Victor E. Asadchikov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Leninskiy Prospekt 59, 119333 Moscow, Russia (V.E.A.)
| | - Sergey V. Saveliev
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution, “Petrovsky National Research Centre of Surgery”, Tsyurupy Str. 3, 117418 Moscow, Russia;
| |
Collapse
|
2
|
Holland ND, Somorjai IML. Serial blockface SEM suggests that stem cells may participate in adult notochord growth in an invertebrate chordate, the Bahamas lancelet. EvoDevo 2020; 11:22. [PMID: 33088474 PMCID: PMC7568382 DOI: 10.1186/s13227-020-00167-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/07/2020] [Indexed: 01/07/2023] Open
Abstract
Background The cellular basis of adult growth in cephalochordates (lancelets or amphioxus) has received little attention. Lancelets and their constituent organs grow slowly but continuously during adult life. Here, we consider whether this slow organ growth involves tissue-specific stem cells. Specifically, we focus on the cell populations in the notochord of an adult lancelet and use serial blockface scanning electron microscopy (SBSEM) to reconstruct the three-dimensional fine structure of all the cells in a tissue volume considerably larger than normally imaged with this technique. Results In the notochordal region studied, we identified 10 cells with stem cell-like morphology at the posterior tip of the organ, 160 progenitor (Müller) cells arranged along its surface, and 385 highly differentiated lamellar cells constituting its core. Each cell type could clearly be distinguished on the basis of cytoplasmic density and overall cell shape. Moreover, because of the large sample size, transitions between cell types were obvious. Conclusions For the notochord of adult lancelets, a reasonable interpretation of our data indicates growth of the organ is based on stem cells that self-renew and also give rise to progenitor cells that, in turn, differentiate into lamellar cells. Our discussion compares the cellular basis of adult notochord growth among chordates in general. In the vertebrates, several studies implied that proliferating cells (chordoblasts) in the cortex of the organ might be stem cells. However, we think it is more likely that such cells actually constitute a progenitor population downstream from and maintained by inconspicuous stem cells. We venture to suggest that careful searches should find stem cells in the adult notochords of many vertebrates, although possibly not in the notochordal vestiges (nucleus pulposus regions) of mammals, where the presence of endogenous proliferating cells remains controversial.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California At San Diego, La Jolla, CA 92093 USA
| | - Ildiko M L Somorjai
- School of Biology, University of Saint Andrews, St. Andrews, KY16 9ST Scotland
| |
Collapse
|
3
|
Powell GL, Russell AP, Sutey J. Patterns of growth in the presacral vertebral column of the leopard gecko (Eublepharis macularius). J Morphol 2018; 279:1088-1103. [PMID: 29732599 DOI: 10.1002/jmor.20833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/06/2018] [Accepted: 04/08/2018] [Indexed: 11/10/2022]
Abstract
Postnatal growth patterns within the vertebral column may be informative about body proportions and regionalization. We measured femur length, lengths of all pre-sacral vertebrae, and lengths of intervertebral spaces, from radiographs of a series of 21 Eublepharis macularius, raised under standard conditions and covering most of the ontogenetic body size range. Vertebrae were grouped into cervical, sternal, and dorsal compartments, and lengths of adjacent pairs of vertebrae were summed before analysis. Femur length was included as an index of body size. Principal component analysis of the variance-covariance matrix of these data was used to investigate scaling among them. PC1 explained 94.19% of total variance, interpreted as the variance due to body size. PC1 differed significantly from the hypothetical isometric vector, indicating overall allometry. The atlas and axis vertebrae displayed strong negative allometry; the remainder of the vertebral pairs exhibited weak negative allometry, isometry or positive allometry. PC1 explained a markedly smaller amount of variance for the vertebral pairs of the cervical compartment than for the remainder of the vertebral pairs, with the exception of the final pair. The relative standard deviations of the eigenvalues from the PCAs of the three vertebral compartments indicated that the vertebrae of the cervical compartment were less strongly integrated by scaling than were the sternal or dorsal vertebrae, which did not differ greatly between themselves in their strong integration, suggesting that the growth of the cervical vertebrae is constrained by the mechanical requirements of the head. Regionalization of the remainder of the vertebral column is less clearly defined but may be associated with wave form propagation incident upon locomotion, and by locomotory changes occasioned by tail autotomy and regeneration. Femur length exhibits negative allometry relative to individual vertebral pairs and to vertebral column length, suggesting a change in locomotor requirements over the ontogenetic size range.
Collapse
Affiliation(s)
| | - Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer Sutey
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Skawiński T, Borczyk B. Evolution of developmental sequences in lepidosaurs. PeerJ 2017; 5:e3262. [PMID: 28462054 PMCID: PMC5410152 DOI: 10.7717/peerj.3262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/01/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Lepidosaurs, a group including rhynchocephalians and squamates, are one of the major clades of extant vertebrates. Although there has been extensive phylogenetic work on this clade, its interrelationships are a matter of debate. Morphological and molecular data suggest very different relationships within squamates. Despite this, relatively few studies have assessed the utility of other types of data for inferring squamate phylogeny. METHODS We used developmental sequences of 20 events in 29 species of lepidosaurs. These sequences were analysed using event-pairing and continuous analysis. They were transformed into cladistic characters and analysed in TNT. Ancestral state reconstructions were performed on two main phylogenetic hypotheses of squamates (morphological and molecular). RESULTS Cladistic analyses conducted using characters generated by these methods do not resemble any previously published phylogeny. Ancestral state reconstructions are equally consistent with both morphological and molecular hypotheses of squamate phylogeny. Only several inferred heterochronic events are common to all methods and phylogenies. DISCUSSION Results of the cladistic analyses, and the fact that reconstructions of heterochronic events show more similarities between certain methods rather than phylogenetic hypotheses, suggest that phylogenetic signal is at best weak in the studied developmental events. Possibly the developmental sequences analysed here evolve too quickly to recover deep divergences within Squamata.
Collapse
Affiliation(s)
- Tomasz Skawiński
- Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocław, Poland
| | - Bartosz Borczyk
- Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocław, Poland
| |
Collapse
|
5
|
Demircan T, İlhan AE, Aytürk N, Yıldırım B, Öztürk G, Keskin İ. A histological atlas of the tissues and organs of neotenic and metamorphosed axolotl. Acta Histochem 2016; 118:746-759. [PMID: 27436816 DOI: 10.1016/j.acthis.2016.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/07/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
Axolotl (Ambystoma Mexicanum) has been emerging as a promising model in stem cell and regeneration researches due to its exceptional regenerative capacity. Although it represents lifelong lasting neoteny, induction to metamorphosis with thyroid hormones (THs) treatment advances the utilization of Axolotl in various studies. It has been reported that amphibians undergo anatomical and histological remodeling during metamorphosis and this transformation is crucial for adaptation to terrestrial conditions. However, there is no comprehensive histological investigation regarding the morphological alterations of Axolotl organs and tissues throughout the metamorphosis. Here, we reveal the histological differences or resemblances between the neotenic and metamorphic axolotl tissues. In order to examine structural features and cellular organization of Axolotl organs, we performed Hematoxylin & Eosin, Luxol-Fast blue, Masson's trichrome, Alcian blue, Orcein and Weigart's staining. Stained samples from brain, gallbladder, heart, intestine, liver, lung, muscle, skin, spleen, stomach, tail, tongue and vessel were analyzed under the light microscope. Our findings contribute to the validation of the link between newly acquired functions and structural changes of tissues and organs as observed in tail, skin, gallbladder and spleen. We believe that this descriptive work provides new insights for a better histological understanding of both neotenic and metamorphic Axolotl tissues.
Collapse
|
6
|
Russell AP, Lynn SE, Powell GL, Cottle A. The regenerated tail of juvenile leopard geckos (Gekkota: Eublepharidae: Eublepharis macularius) preferentially stores more fat than the original. ZOOLOGY 2015; 118:183-91. [PMID: 25935709 DOI: 10.1016/j.zool.2014.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/14/2014] [Accepted: 12/03/2014] [Indexed: 11/27/2022]
Abstract
The tail of many species of lizard is used as a site of fat storage, and caudal autotomy is a widespread phenomenon among lizards. This means that caudal fat stores are at risk of being lost if the tail is autotomized. For fat-tailed species, such as the leopard gecko, this may be particularly costly. Previous work has shown that tail regeneration in juveniles of this species is rapid and that it receives priority for energy allocation, even when dietary resources are markedly reduced. We found that the regenerated tails of juvenile leopard geckos are more massive than their original counterparts, regardless of dietary intake, and that they exhibit greater amounts of skeleton, inner fat, muscle and subcutaneous fat than original tails (as assessed through cross-sectional area measurements of positionally equivalent stations along the tail). Autotomy and regeneration result in changes in tail shape, mass and the pattern of tissue distribution within the tail. The regenerated tail exhibits enhanced fat storage capacity, even in the face of a diet that results in significant slowing of body growth. Body growth is thus sacrificed at the expense of rapid tail growth. Fat stores laid down rapidly in the regenerating tail may later be used to fuel body growth or reproductive investment. The regenerated tail thus seems to have adaptive roles of its own, and provides a potential vehicle for studying trade-offs that relate to life history strategy.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4.
| | - Sabrina E Lynn
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - G Lawrence Powell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | - Andrew Cottle
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| |
Collapse
|
7
|
Loizides M, Georgiou AN, Somarakis S, Witten PE, Koumoundouros G. A new type of lordosis and vertebral body compression in Gilthead sea bream, Sparus aurata L.: aetiology, anatomy and consequences for survival. JOURNAL OF FISH DISEASES 2014; 37:949-957. [PMID: 24117787 DOI: 10.1111/jfd.12189] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
A new type of vertebral malformation is described, consisting of deformed cartilaginous neural and haemal processes and the compression and fusion of vertebral bodies. The malformation is designated as haemal vertebral compression and fusion (haemal VCF). We studied the aetiology of the malformations and described microanatomical histopathological alterations. The malformations were detected during routine quality control in one of six monitored Gilthead sea bream populations. Haemal VCF affected the posterior part of the vertebral column (haemal vertebrae). In 20% of the deformed specimens, haemal VCF was combined with lordosis. At 35 dph (days post-hatching), early anatomical signs of the haemal VCF consisted of abnormal centrum mineralization, malformed cartilaginous neural and haemal processes and developing lordotic alterations. The histological examination of the deformed individuals revealed that haemal VCF is preceded by notochord abnormalities. The frequency of deformed individuals was three times higher at 35 than at 61 dph (50.3% vs. 17.2%, n = 157 and n = 250, respectively). No signs of repair or reversion of malformations have been observed. Thus, the steep decrease in deformities in older animals suggests that haemal VCF is linked to high mortality rates. The results are discussed in respect of the possible causative factors of haemal VCF.
Collapse
Affiliation(s)
- M Loizides
- Biology Department, University of Crete, Vasilica Vouton, Heraklio, Crete, Greece
| | | | | | | | | |
Collapse
|
8
|
Gilbert EAB, Payne SL, Vickaryous MK. The Anatomy and Histology of Caudal Autotomy and Regeneration in Lizards. Physiol Biochem Zool 2013; 86:631-44. [DOI: 10.1086/673889] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|