1
|
Coombs EJ, Knapp A, Park T, Bennion RF, McCurry MR, Lanzetti A, Boessenecker RW, McGowen MR. Drivers of morphological evolution in the toothed whale jaw. Curr Biol 2024; 34:273-285.e3. [PMID: 38118449 DOI: 10.1016/j.cub.2023.11.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
Toothed whales (odontocetes) emit high-frequency underwater sounds (echolocate)-an extreme and unique innovation allowing them to sense their prey and environment. Their highly specialized mandible (lower jaw) allows high-frequency sounds to be transmitted back to the inner ear. Echolocation is evident in the earliest toothed whales, but little research has focused on the evolution of mandibular form regarding this unique adaptation. Here, we use a high-density, three-dimensional geometric morphometric analysis of 100 living and extinct cetacean species spanning their ∼50-million-year evolutionary history. Our analyses demonstrate that most shape variation is found in the relative length of the jaw and the mandibular symphysis. The greatest morphological diversity was obtained during two periods of rapid evolution: the initial evolution of archaeocetes (stem whales) in the early to mid-Eocene as they adapted to an aquatic lifestyle, representing one of the most extreme adaptive transitions known, and later on in the mid-Oligocene odontocetes as they became increasingly specialized for a range of diets facilitated by increasingly refined echolocation. Low disparity in the posterior mandible suggests the shape of the acoustic window, which receives sound, has remained conservative since the advent of directional hearing in the aquatic archaeocetes, even as the earliest odontocetes began to receive sounds from echolocation. Diet, echolocation, feeding method, and dentition type strongly influence mandible shape. Unlike in the toothed whale cranium, we found no significant asymmetry in the mandible. We suggest that a combination of refined echolocation and associated dietary specializations have driven morphology and disparity in the toothed whale mandible.
Collapse
Affiliation(s)
- Ellen J Coombs
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St & Constitution Ave NW, Washington, DC 20560, USA; Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Andrew Knapp
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; University College London, Gower Street, London WC1E 6BT, UK
| | - Travis Park
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Rebecca F Bennion
- Evolution & Diversity Dynamics Lab, Department of Geology, University of Liege, 4000 Liege, Belgium; O.D. Earth and History of Life, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Matthew R McCurry
- Australian Museum Research Institute, 1 William Street, Sydney, NSW 2010, Australia; Earth & Sustainability Science Research Centre, School of Biological, Earth and Environmental Sciences (BEES), University of New South Wales, Kensington, NSW 2052, Australia; Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Agnese Lanzetti
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK; School of Geography, Earth, and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert W Boessenecker
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael R McGowen
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th St & Constitution Ave NW, Washington, DC 20560, USA
| |
Collapse
|
2
|
Ecomorphology of toothed whales (Cetacea, Odontoceti) as revealed by 3D skull geometry. J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09642-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractExtant odontocetes (toothed whales) exhibit differences in body size and brain mass, biosonar mode, feeding strategies, and diving and habitat adaptations. Strong selective pressures associated with these factors have likely contributed to the morphological diversification of their skull. Here, we used 3D landmark geometric morphometric data from the skulls of 60 out of ~ 72 extant odontocete species and a well-supported phylogenetic tree to test whether size and shape variation are associated with ecological adaptations at an interspecific scale. Odontocete skull morphology exhibited a significant phylogenetic signal, with skull size showing stronger signal than shape. After accounting for phylogeny, significant associations were detected between skull size and biosonar mode, body length, brain and body mass, maximum and minimum prey size, and maximum peak frequency. Brain mass was also strongly correlated with skull shape together with surface temperature and average and minimum prey size. When asymmetric and symmetric components of shape were analysed separately, a significant correlation was detected between sea surface temperature and both symmetric and asymmetric components of skull shape, and between diving ecology and the asymmetric component. Skull shape variation of odontocetes was strongly influenced by evolutionary allometry but most of the associations with ecological variables were not supported after phylogenetic correction. This suggests that ecomorphological feeding adaptations vary more between, rather than within, odontocete families, and functional anatomical patterns across odontocete clades are canalised by size constraints.
Collapse
|
3
|
Skull ecomorphological variation of narwhals (Monodon monoceros, Linnaeus 1758) and belugas (Delphinapterus leucas, Pallas 1776) reveals phenotype of their hybrids. PLoS One 2022; 17:e0273122. [PMID: 35960760 PMCID: PMC9374245 DOI: 10.1371/journal.pone.0273122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Narwhals and belugas are toothed whales belonging to the Monodontidae. Belugas have a circumpolar Arctic and sub-Artic distribution while narwhals are restricted to the Atlantic Arctic. Their geographical ranges overlap during winter migrations in the Baffin Bay area (Canada/West Greenland) and successful interbreeding may occur. Here, we employed geometric morphometrics on museum specimens to explore the cranium and mandible morphology of a known hybrid (NHMD MCE 1356) and the cranium morphology of a putative hybrid (NHMD 1963.44.1.4) relative to skull morphological variation in the parental species. Specifically, we used 3D models of skulls from 69 belugas, 86 narwhals, and the two known/putative hybrids and 2D left hemi-mandibles from 20 belugas, 64 narwhals and the known hybrid. Skull shape analyses allowed clear discrimination between species. Narwhals are characterised by a relatively short rostrum and wide neurocranium while belugas show a more elongated and narrower cranium. Sexual size dimorphism was detected in narwhals, with males larger than females, but no sexual shape dimorphism was detected in either species (excluding presence/absence of tusks in narwhals). Morphological skull variation was also dependent on different allometric slopes between species and sexes in narwhals. Our analyses showed that the cranium of the known hybrid was phenotypically close to belugas but its 2D hemi-mandible had a narwhal shape and size morphology. Both cranium and mandible were strongly correlated, with the pattern of covariation being similar to belugas. The putative hybrid was a pure male narwhal with extruded teeth. Comparison of genomic DNA supported this result, and stable carbon and nitrogen isotope values suggested that the putative hybrid had a more benthic foraging strategy compared to narwhals. This work demonstrates that although the known hybrid could be discriminated from narwhals and belugas, detection of its affinities with these parental species was dependent on the part of the skull analysed.
Collapse
|
4
|
The tempo of cetacean cranial evolution. Curr Biol 2022; 32:2233-2247.e4. [DOI: 10.1016/j.cub.2022.04.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 01/05/2023]
|
5
|
Vicari D, Sabin RC, Brown RP, Lambert O, Bianucci G, Meloro C. Skull morphological variation in a British stranded population of false killer whale (Pseudorca crassidens): a three-dimensional geometric morphometric approach. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The false killer whale (Pseudorca crassidens (Owen, 1846)) is a globally distributed delphinid that shows geographical differentiation in its skull morphology. We explored cranial morphological variation in a sample of 85 skulls belonging to a mixed sex population stranded in the Moray Firth, Scotland, in 1927. A three-dimensional digitizer (Microscribe 2GX) was used to record 37 anatomical landmarks on the cranium and 25 on the mandible to investigate size and shape variation and to explore sexual dimorphism using geometric morphometric. Males showed greater overall skull size than females, whereas no sexual dimorphism could be identified in cranial and mandibular shape. Allometric skull changes occurred in parallel for both males and females, supporting the lack of sexual shape dimorphism for this particular sample. Also, fluctuating asymmetry did not differ between crania of males and females. This study confirms the absence of sexual shape dimorphism and the presence of a sexual size dimorphism in this false killer whale population.
Collapse
Affiliation(s)
- Deborah Vicari
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Richard C. Sabin
- Department of Life Sciences, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK
| | - Richard P. Brown
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Olivier Lambert
- D.O. Terre et Histoire de la Vie, Institut Royal des Sciences Naturelles de Belgique, 1000 Brussels, Belgium
| | - Giovanni Bianucci
- Dipartimento di Scienze della Terra, Università di Pisa, 56126 Pisa, Italy
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| |
Collapse
|
6
|
Frainer G, Huggenberger S, Moreno IB, Plön S, Galatius A. Head adaptation for sound production and feeding strategy in dolphins (Odontoceti: Delphinida). J Anat 2021; 238:1070-1081. [PMID: 33319356 PMCID: PMC8053589 DOI: 10.1111/joa.13364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023] Open
Abstract
Head morphology in toothed whales evolved under selective pressures on feeding strategy and sound production. The postnatal development of the skull (n = 207) and mandible (n = 219) of six Delphinida species which differ in feeding strategy but exhibit similar sound emission patterns, including two narrow-band high-frequency species, were investigated through 3D morphometrics. Morphological changes throughout ontogeny were demonstrated based on the main source of variation (i.e., prediction lines) and the common allometric component. Multivariate trajectory analysis with pairwise comparisons between all species was performed to evaluate specific differences on the postnatal development of skulls and mandibles. Changes in the rostrum formation contributed to the variation (skull: 49%; mandible: 90%) of the entire data set and might not only reflect the feeding strategy adopted by each lineage but also represents an adaptation for sound production and reception. As an important structure for directionality of sound emissions, this may increase directionality in raptorial feeders. Phylogenetic generalized least squares analyses indicated that shape of the anterior portion of the skull is strongly dependent on phylogeny and might not only reflect feeding mode, but also morphological adaptations for sound production, particularly in raptorial species. Thus, postnatal development seems to represent a crucial stage for biosonar maturation in some raptorial species such as Pontoporia blainvillei and Sousa plumbea. The ontogeny of their main tool for navigation and hunting might reflect their natural history peculiarities and thus potentially define their main vulnerabilities to anthropogenic changes in the environment.
Collapse
Affiliation(s)
- Guilherme Frainer
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Ignacio B Moreno
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Estudos Costeiros, Limnológicos e Marinhos (CECLIMAR/CLN/UFRGS), Universidade Federal do Rio Grande do Sul, Imbé, Brazil
| | - Stephanie Plön
- Bayworld Centre for Research and Education (BCRE), Port Elizabeth, South Africa
| | - Anders Galatius
- Marine Mammal Research, Department of Bioscience, Aarhus University, Roskilde, Denmark
| |
Collapse
|
7
|
Wysokowski M, Zaslansky P, Ehrlich H. Macrobiomineralogy: Insights and Enigmas in Giant Whale Bones and Perspectives for Bioinspired Materials Science. ACS Biomater Sci Eng 2020; 6:5357-5367. [PMID: 33320547 DOI: 10.1021/acsbiomaterials.0c00364] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The giant bones of whales (Cetacea) are the largest extant biomineral-based constructs known. The fact that such mammalian bones can grow up to 7 m long raises questions about differences and similarities to other smaller bones. Size and exposure to environmental stress are good reasons to suppose that an unexplored level of hierarchical organization may be present that is not needed in smaller bones. The existence of such a macroscopic naturally grown structure with poorly described mechanisms for biomineralization is an example of the many yet unexplored phenomena in living organisms. In this article, we describe key observations in macrobiomineralization and suggest that the large scale of biomineralization taking place in selected whale bones implies they may teach us fundamental principles of the chemistry, biology, and biomaterials science governing bone formation, from atomistic to the macrolevel. They are also associated with a very lipid rich environment on those bones. This has implications for bone development and damage sensing that has not yet been fully addressed. We propose that whale bone construction poses extreme requirements for inorganic material storage, mediated by biomacromolecules. Unlike extinct large mammals, cetaceans still live deep in large terrestrial water bodies following eons of adaptation. The nanocomposites from which the bones are made, comprising biomacromolecules and apatite nanocrystals, must therefore be well adapted to create the macroporous hierarchically structured architectures of the bones, with mechanical properties that match the loads imposed in vivo. This massive skeleton directly contributes to the survival of these largest mammals in the aquatic environments of Earth, with structural refinements being the result of 60 million years of evolution. We also believe that the concepts presented in this article highlight the beneficial uses of multidisciplinary and multiscale approaches to study the structural peculiarities of both organic and inorganic phases as well as mechanisms of biomineralization in highly specialized and evolutionarily conserved hard tissues.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznan 60965, Poland.,Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Strasse 3, Freiberg 09599, Germany
| | - Paul Zaslansky
- Department for Restorative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Strasse 3, Freiberg 09599, Germany
| |
Collapse
|
8
|
Park T, Mennecart B, Costeur L, Grohé C, Cooper N. Convergent evolution in toothed whale cochleae. BMC Evol Biol 2019; 19:195. [PMID: 31651234 PMCID: PMC6813997 DOI: 10.1186/s12862-019-1525-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/01/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Odontocetes (toothed whales) are the most species-rich marine mammal lineage. The catalyst for their evolutionary success is echolocation - a form of biological sonar that uses high-frequency sound, produced in the forehead and ultimately detected by the cochlea. The ubiquity of echolocation in odontocetes across a wide range of physical and acoustic environments suggests that convergent evolution of cochlear shape is likely to have occurred. To test this, we used SURFACE; a method that fits Ornstein-Uhlenbeck (OU) models with stepwise AIC (Akaike Information Criterion) to identify convergent regimes on the odontocete phylogeny, and then tested whether convergence in these regimes was significantly greater than expected by chance. RESULTS We identified three convergent regimes: (1) True's (Mesoplodon mirus) and Cuvier's (Ziphius cavirostris) beaked whales; (2) sperm whales (Physeter macrocephalus) and all other beaked whales sampled; and (3) pygmy (Kogia breviceps) and dwarf (Kogia sima) sperm whales and Dall's porpoise (Phocoenoides dalli). Interestingly the 'river dolphins', a group notorious for their convergent morphologies and riverine ecologies, do not have convergent cochlear shapes. The first two regimes were significantly convergent, with habitat type and dive type significantly correlated with membership of the sperm whale + beaked whale regime. CONCLUSIONS The extreme acoustic environment of the deep ocean likely constrains cochlear shape, causing the cochlear morphology of sperm and beaked whales to converge. This study adds support for cochlear morphology being used to predict the ecology of extinct cetaceans.
Collapse
Affiliation(s)
- Travis Park
- Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, London, UK.
| | - Bastien Mennecart
- Naturhistorisches Museum Basel, Augustinergasse 2, 4001, Basel, Switzerland
- Naturhistorisches Museum Wien, Burgring 7, 1010, Vienna, Austria
| | - Loïc Costeur
- Naturhistorisches Museum Basel, Augustinergasse 2, 4001, Basel, Switzerland
| | - Camille Grohé
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
- Laboratory Paleontology Evolution Paleoecosystems Paleoprimatology (PALEVOPRIM) - UMR 7262, CNRS-INEE/University of Poitiers, 86073, Poitiers Cedex 9, France
| | - Natalie Cooper
- Department of Life Sciences, Natural History Museum, Cromwell Road, SW7 5BD, London, UK
| |
Collapse
|
9
|
Page CE, Cooper N. Morphological convergence in 'river dolphin' skulls. PeerJ 2017; 5:e4090. [PMID: 29177120 PMCID: PMC5701545 DOI: 10.7717/peerj.4090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/02/2017] [Indexed: 11/26/2022] Open
Abstract
Convergent evolution can provide insights into the predictability of, and constraints on, the evolution of biodiversity. One striking example of convergence is seen in the ‘river dolphins’. The four dolphin genera that make up the ‘river dolphins’ (Inia geoffrensis, Pontoporia blainvillei, Platanista gangetica and Lipotes vexillifer) do not represent a single monophyletic group, despite being very similar in morphology. This has led many to using the ‘river dolphins’ as an example of convergent evolution. We investigate whether the skulls of the four ‘river dolphin’ genera are convergent when compared to other toothed dolphin taxa in addition to identifying convergent cranial and mandibular features. We use geometric morphometrics to uncover shape variation in the skulls of the ‘river dolphins’ and then apply a number of phylogenetic techniques to test for convergence. We find significant convergence in the skull morphology of the ‘river dolphins’. The four genera seem to have evolved similar skull shapes, leading to a convergent morphotype characterised by elongation of skull features. The cause of this morphological convergence remains unclear. However, the features we uncover as convergent, in particular elongation of the rostrum, support hypotheses of shared feeding mode or diet and thus provide the foundation for future work into convergence within the Odontoceti.
Collapse
Affiliation(s)
- Charlotte E Page
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Natalie Cooper
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| |
Collapse
|
10
|
Guidarelli G, Colangelo P, de Francesco MC, Nicolosi P, Meloro C, Loy A. Phenotypic Changes Across a Geographic Gradient: The Case of Three Sympatric Dolphin Species. Evol Biol 2017. [DOI: 10.1007/s11692-017-9435-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
McCurry MR, Fitzgerald EMG, Evans AR, Adams JW, McHenry CR. Skull shape reflects prey size niche in toothed whales. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
12
|
de Francesco MC, Loy A. Intra- and Interspecific Interactions as Proximate Determinants of Sexual Dimorphism and Allometric Trajectories in the Bottlenose Dolphin Tursiops truncatus (Cetacea, Odontoceti, Delphinidae). PLoS One 2016; 11:e0164287. [PMID: 27764133 PMCID: PMC5072710 DOI: 10.1371/journal.pone.0164287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/22/2016] [Indexed: 11/18/2022] Open
Abstract
Feeding adaptation, social behaviour, and interspecific interactions related to sexual dimorphism and allometric growth are particularly challenging to be investigated in the high sexual monomorphic Delphinidae. We used geometric morphometrics to extensively explore sexual dimorphism and ontogenetic allometry of different projections of the skull and the mandible of the bottlenose dolphin Tursiops truncatus. Two-dimensional landmarks were recorded on the dorsal, ventral, lateral, and occipital views of the skull, and on the lateral view of the left and the right mandible of 104 specimens from the Mediterranean and the North Seas, differing environmental condition and degree of interspecific associations. Landmark configurations were transformed, standardized and superimposed through a Generalized Procrustes Analysis. Size and shape differences between adult males and females were respectively evaluated through ANOVA on centroid size, Procrustes ANOVA on Procrustes distances, and MANOVA on Procrustes coordinates. Ontogenetic allometry was investigated by multivariate regression of shape coordinates on centroid size in the largest homogenous sample from the North Sea. Results evidenced sexual dimorphic asymmetric traits only detected in the adults of the North Sea bottlenose dolphins living in monospecific associations, with females bearing a marked incision of the cavity hosting the left tympanic bulla. These differences were related to a more refined echolocalization system that likely enhances the exploitation of local resources by philopatric females. Distinct shape in immature versus mature stages and asymmetric changes in postnatal allometry of dorsal and occipital traits, suggest that differences between males and females are established early during growth. Allometric growth trajectories differed between males and females for the ventral view of the skull. Allometric trajectories differed among projections of skull and mandible, and were related to dietary shifts experienced by subadults and adults.
Collapse
Affiliation(s)
- Maria Carla de Francesco
- Department of Biosciences and Territory, University of Molise, Fonte Lappone locality, Pesche, (IS) I-86090, Italy
| | - Anna Loy
- Department of Biosciences and Territory, University of Molise, Fonte Lappone locality, Pesche, (IS) I-86090, Italy
| |
Collapse
|
13
|
Ary W, Cranford TW, Berta A, Krysl P. Functional Morphology and Symmetry in the Odontocete Ear Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 875:57-64. [PMID: 26610944 DOI: 10.1007/978-1-4939-2981-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Odontocete ear complexes or tympanoperiotic complexes (TPCs) were compared for asymmetry. Left and right TPCs were collected from one long-beaked common dolphin (Delphinus capensis) and one Amazon River dolphin (Inia geoffrensis). Asymmetry was assessed by volumetric comparisons of left and right TPCs and by visual comparison of superimposed models of the right TPC to a reflected mirror image of the left TPC. Kolmogorov-Smirnov tests were performed to compare the resonant frequencies of the TPCs as calculated by vibrational analysis. All analyses found slight differences between TPCs from the same specimen in contrast to the directional asymmetry in the nasal region of odontocete skulls.
Collapse
Affiliation(s)
- William Ary
- Department of Biology, San Diego State University, 2674 Russmar Drive, San Diego, CA, 92123-3422, USA.
| | - Ted W Cranford
- Department of Biology, San Diego State University, 2674 Russmar Drive, San Diego, CA, 92123-3422, USA.
| | - Annalisa Berta
- Department of Biology, San Diego State University, 2674 Russmar Drive, San Diego, CA, 92123-3422, USA.
| | - Petr Krysl
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
14
|
Lonati GL, Westgate AJ, Pabst DA, Koopman HN. Nitrogen solubility in odontocete blubber and mandibular fats in relation to lipid composition. J Exp Biol 2015; 218:2620-30. [DOI: 10.1242/jeb.122606] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Understanding toothed whale (odontocete) diving gas dynamics is important given the recent atypical mass strandings of odontocetes (particularly beaked whales) associated with mid-frequency naval sonar. Some stranded whales have exhibited gas emboli (pathologies resembling decompression sickness) in their specialized intramandibular and extramandibular fat bodies used for echolocation and hearing. These tissues have phylogenetically unique, endogenous lipid profiles with poorly understood biochemical properties. Current diving gas dynamics models assume an Ostwald nitrogen (N2) solubility of 0.07 ml N2 ml−1 oil in odontocete fats, although solubility in blubber from many odontocetes exceeds this value. The present study examined N2 solubility in the blubber and mandibular fats of seven species across five families, relating it to lipid composition. Across all species, N2 solubility increased with wax ester content and was generally higher in mandibular fats (0.083±0.002 ml N2 ml−1 oil) than in blubber (0.069±0.007 ml N2 ml−1 oil). This effect was more pronounced in mandibular fats with higher concentrations of shorter, branched fatty acids/alcohols. Mandibular fats of short-finned pilot whales, Atlantic spotted dolphins and Mesoplodon beaked whales had the highest N2 solubility values (0.097±0.005, 0.081±0.007 and 0.080±0.003 ml N2 ml−1 oil, respectively). Pilot and beaked whales may experience high N2 loads during their relatively deeper dives, although more information is needed about in vivo blood circulation to mandibular fats. Future diving models should incorporate empirically measured N2 solubility of odontocete mandibular fats to better understand N2 dynamics and potential pathologies from gas/fat embolism.
Collapse
Affiliation(s)
- Gina L. Lonati
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| | - Andrew J. Westgate
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| | - D. Ann Pabst
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| | - Heather N. Koopman
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA
| |
Collapse
|
15
|
McDonald M, Vapniarsky-Arzi N, Verstraete F, Staszyk C, Leale D, Woolard K, Arzi B. Characterization of the temporomandibular joint of the harbour porpoise (Phocoena phocoena) and Risso's dolphin (Grampus griseus). Arch Oral Biol 2015; 60:582-92. [DOI: 10.1016/j.archoralbio.2015.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/22/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
|
16
|
Ekdale EG, Racicot RA. Anatomical evidence for low frequency sensitivity in an archaeocete whale: comparison of the inner ear of Zygorhiza kochii with that of crown Mysticeti. J Anat 2014; 226:22-39. [PMID: 25400023 DOI: 10.1111/joa.12253] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 11/28/2022] Open
Abstract
The evolution of hearing in cetaceans is a matter of current interest given that odontocetes (toothed whales) are sensitive to high frequency sounds and mysticetes (baleen whales) are sensitive to low and potentially infrasonic noises. Earlier diverging stem cetaceans (archaeocetes) were hypothesized to have had either low or high frequency sensitivity. Through CT scanning, the morphology of the bony labyrinth of the basilosaurid archaeocete Zygorhiza kochii is described and compared to novel information from the inner ears of mysticetes, which are less known than the inner ears of odontocetes. Further comparisons are made with published information for other cetaceans. The anatomy of the cochlea of Zygorhiza is in line with mysticetes and supports the hypothesis that Zygorhiza was sensitive to low frequency noises. Morphological features that support the low frequency hypothesis and are shared by Zygorhiza and mysticetes include a long cochlear canal with a high number of turns, steeply graded curvature of the cochlear spiral in which the apical turn is coiled tighter than the basal turn, thin walls separating successive turns that overlap in vestibular view, and reduction of the secondary bony lamina. Additional morphology of the vestibular system indicates that Zygorhiza was more sensitive to head rotations than extant mysticetes are, which likely indicates higher agility in the ancestral taxon.
Collapse
Affiliation(s)
- Eric G Ekdale
- Department of Biology, San Diego State University, San Diego, CA, USA; Department of Paleontology, San Diego Natural History Museum, San Diego, CA, USA
| | | |
Collapse
|
17
|
Guidarelli G, Nicolosi P, Fusco G, de Francesco MC, Loy A. Morphological variation and modularity in the mandible of three Mediterranean dolphin species. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/11250003.2014.943685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Unique Feeding Morphology in a New Prognathous Extinct Porpoise from the Pliocene of California. Curr Biol 2014; 24:774-9. [DOI: 10.1016/j.cub.2014.02.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 11/24/2022]
|
19
|
Gatesy J, Geisler JH, Chang J, Buell C, Berta A, Meredith RW, Springer MS, McGowen MR. A phylogenetic blueprint for a modern whale. Mol Phylogenet Evol 2012; 66:479-506. [PMID: 23103570 DOI: 10.1016/j.ympev.2012.10.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 11/16/2022]
Abstract
The emergence of Cetacea in the Paleogene represents one of the most profound macroevolutionary transitions within Mammalia. The move from a terrestrial habitat to a committed aquatic lifestyle engendered wholesale changes in anatomy, physiology, and behavior. The results of this remarkable transformation are extant whales that include the largest, biggest brained, fastest swimming, loudest, deepest diving mammals, some of which can detect prey with a sophisticated echolocation system (Odontoceti - toothed whales), and others that batch feed using racks of baleen (Mysticeti - baleen whales). A broad-scale reconstruction of the evolutionary remodeling that culminated in extant cetaceans has not yet been based on integration of genomic and paleontological information. Here, we first place Cetacea relative to extant mammalian diversity, and assess the distribution of support among molecular datasets for relationships within Artiodactyla (even-toed ungulates, including Cetacea). We then merge trees derived from three large concatenations of molecular and fossil data to yield a composite hypothesis that encompasses many critical events in the evolutionary history of Cetacea. By combining diverse evidence, we infer a phylogenetic blueprint that outlines the stepwise evolutionary development of modern whales. This hypothesis represents a starting point for more detailed, comprehensive phylogenetic reconstructions in the future, and also highlights the synergistic interaction between modern (genomic) and traditional (morphological+paleontological) approaches that ultimately must be exploited to provide a rich understanding of evolutionary history across the entire tree of Life.
Collapse
Affiliation(s)
- John Gatesy
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | | | | | | | | | | | | | | |
Collapse
|