1
|
Eric P, Gaëlle S, Renaud B, Fine ML, Loïc K, Lucia DI, Marta B. Sound production and mechanism in the cryptic cusk-eel Parophidion vassali. J Anat 2022; 241:581-600. [PMID: 35666031 PMCID: PMC9358751 DOI: 10.1111/joa.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
This study investigates the sounds and the anatomy of the sound-producing organ in the male and female sand-dwelling cusk-eel Parophidion vassali. Although both sexes have similar external phenotype, they can be distinguished by their sonic apparatus and sounds. As in many Ophioidei, Parophidion vassali presents a panel of highly derived characters. Fish possess three pairs of sonic muscles, and males have mineralized swimbladder caps on which inserts the ventral sonic muscle, a neural arch that pivots, a stretchable swimbladder fenestra, an osseous swimbladder plate and a rounded pressure-release membrane in the caudal swimbladder. Females, however, do not possess anterior swimbladder caps, a swimbladder fenestra and the caudal rounded membrane. Males possess the unusual ability to produce sounds starting with a set of low amplitude pulses followed by a second set with higher amplitudes clearly dividing each sound unit into two parts. Females do not vary their sound amplitude in this way: they produce shorter sounds and pulse periods but with a higher peak frequency. Morphology and sound features support the sound-producing mechanism is based on a rebound system (i.e. quick backward snap of the anterior swimbladder). Based on features of the sounds from tank recordings, we have putatively identified the sound of male Parophidion vassali at sea. As these species are ecologically cryptic, we hope this work will allow assessment and clarify the distribution of their populations.
Collapse
Affiliation(s)
- Parmentier Eric
- Laboratory of Functional and Evolutionary MorphologyAFFISH‐RC, UR FOCUS, University of LiègeLiègeBelgium
| | - Stainier Gaëlle
- Laboratory of Functional and Evolutionary MorphologyAFFISH‐RC, UR FOCUS, University of LiègeLiègeBelgium
| | - Boistel Renaud
- Laboratory Mecadev, Department of AViVUMR7179 CNRS/MNHN, National Museum of Natural History
| | - Michael L. Fine
- Department of BiologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Kéver Loïc
- Laboratory of Functional and Evolutionary MorphologyAFFISH‐RC, UR FOCUS, University of LiègeLiègeBelgium
- Laboratory Mecadev, Department of AViVUMR7179 CNRS/MNHN, National Museum of Natural History
| | - Di Iorio Lucia
- Chorus InstituteGrenobleFrance
- Université de Perpignan Via Domitia, CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, UMRPerpignanFrance
| | - Bolgan Marta
- Laboratory of Functional and Evolutionary MorphologyAFFISH‐RC, UR FOCUS, University of LiègeLiègeBelgium
| |
Collapse
|
2
|
Barboza MLB, Reyno B. Taste receptors in aquatic mammals: Potential role of solitary chemosensory cells in immune responses. Anat Rec (Hoboken) 2021; 305:680-687. [PMID: 34264538 DOI: 10.1002/ar.24708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 11/07/2022]
Abstract
The sense of taste is associated with the evaluation of food and other environmental parameters such as salinity. In aquatic mammals, anatomic and behavioral evidence of the use of taste varies by species and genomic analysis of taste receptors indicates an overall reduction and, in some cases, complete loss of intact bitter and sweet taste receptors. However, the receptors used by taste buds in the oral cavity are found on cells in other areas of the body and play an important role in immune responses. In the respiratory tract, an example of such cells is solitary chemosensory cells (SCCs) which have bitter and sweet taste receptors. The bitter receptors detect chemicals given off by pathogens and initiate an innate immune response. Although many aquatic mammals may not have a role for taste in the assessment of food, they likely would benefit from the added protection that SCCs provide, especially considering respiratory diseases are a problem for many aquatic mammals. While evidence indicates that some species do not possess functional bitter receptors for taste, many do have intact bitter receptor genes and it is important for researchers to be aware of all roles for these receptors in homeostasis. Through a better understanding of the anatomy and physiology of aquatic mammal's respiratory systems, better treatment and management is possible.
Collapse
Affiliation(s)
| | - Beau Reyno
- University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
3
|
Presti P, Johnson GD, Datovo A. Anatomy and evolution of the pectoral filaments of threadfins (Polynemidae). Sci Rep 2020; 10:17751. [PMID: 33082461 PMCID: PMC7575576 DOI: 10.1038/s41598-020-74896-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
The most remarkable anatomical specialization of threadfins (Percomorphacea: Polynemidae) is the division of their pectoral fin into an upper, unmodified fin and a lower portion with rays highly modified into specialized filaments. Such filaments are usually elongate, free from interradial membrane, and move independently from the unmodified fin to explore the environment. The evolution of the pectoral filaments involved several morphological modifications herein detailed for the first time. The posterior articular facet of the coracoid greatly expands anteroventrally during development. Similar expansions occur in pectoral radials 3 and 4, with the former usually acquiring indentations with the surrounding bones and losing association with both rays and filaments. Whereas most percomorphs typically have four or five muscles serving the pectoral fin, adult polynemids have up to 11 independent divisions in the intrinsic pectoral musculature. The main adductor and abductor muscles masses of the pectoral system are completely divided into two muscle segments, each independently serving the pectoral-fin rays (dorsally) and the pectoral filaments (ventrally). Based on the innervation pattern and the discovery of terminal buds in the external surface of the filaments, we demonstrate for the first time that the pectoral filaments of threadfins have both tactile and gustatory functions.
Collapse
Affiliation(s)
- Paulo Presti
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré, 481, Ipiranga, São Paulo, SP, 04263-000, Brazil.
| | - G David Johnson
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Aléssio Datovo
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré, 481, Ipiranga, São Paulo, SP, 04263-000, Brazil
| |
Collapse
|
4
|
Bolgan M, Gervaise C, Di Iorio L, Lossent J, Lejeune P, Raick X, Parmentier E. Fish biophony in a Mediterranean submarine canyon. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:2466. [PMID: 32359295 DOI: 10.1121/10.0001101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Although several bioacoustics investigations have shed light on the acoustic communication of Mediterranean fish species, the occurrence of fish sounds has never been reported below -40 m depth. This study assessed the occurrence of fish sounds at greater depths by monitoring the soundscape of a Mediterranean submarine canyon (Calvi, France) thanks to a combination of Static Acoustic Monitoring (three stations, from -125 to -150 m depth, 3 km from coastline) and of hydrophone-integrated gliders (Mobile Acoustic Monitoring; from -60 to -900 m depth, 3-6 km from coastline). Biological sounds were detected in 38% of the audio files; ten sound types (for a total of more than 9.000 sounds) with characteristics corresponding to those emitted by vocal species, or known as produced by fish activities, were found. For one of these sound types, emitter identity was inferred at the genus level (Ophidion sp.). An increase of from 10 to 15 dB re 1 μPa in sea ambient noise was observed during daytime hours due to boat traffic, potentially implying an important daytime masking effect. This study shows that monitoring the underwater soundscape of Mediterranean submarine canyons can provide holistic information needed to better understand the state and the dynamics of these heterogeneous, highly diverse environments.
Collapse
Affiliation(s)
- Marta Bolgan
- Laboratory of Functional and Evolutionary Morphology (Freshwater and Oceanic Sciences Unit of Research), Institut de Chimie, B6c, University of Liège, 4000 Liège, Belgium
| | - Cedric Gervaise
- CHORUS Institute, INP Phelma Minatec, 3 Parvis Louis Néel, 38016 Grenoble, France
| | - Lucia Di Iorio
- CHORUS Institute, INP Phelma Minatec, 3 Parvis Louis Néel, 38016 Grenoble, France
| | - Julie Lossent
- CHORUS Institute, INP Phelma Minatec, 3 Parvis Louis Néel, 38016 Grenoble, France
| | - Pierre Lejeune
- Station de Recherches Sousmarines et Océanographiques, Pointe Revellata BP33, 20260 Calvi, France
| | - Xavier Raick
- Laboratory of Functional and Evolutionary Morphology (Freshwater and Oceanic Sciences Unit of Research), Institut de Chimie, B6c, University of Liège, 4000 Liège, Belgium
| | - Eric Parmentier
- Laboratory of Functional and Evolutionary Morphology (Freshwater and Oceanic Sciences Unit of Research), Institut de Chimie, B6c, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
5
|
Daghfous G, Auclair F, Blumenthal F, Suntres T, Lamarre-Bourret J, Mansouri M, Zielinski B, Dubuc R. Sensory cutaneous papillae in the sea lamprey (Petromyzon marinus L.): I. Neuroanatomy and physiology. J Comp Neurol 2019; 528:664-686. [PMID: 31605382 DOI: 10.1002/cne.24787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Molecules present in an animal's environment can indicate the presence of predators, food, or sexual partners and consequently, induce migratory, reproductive, foraging, or escape behaviors. Three sensory systems, the olfactory, gustatory, and solitary chemosensory cell (SCC) systems detect chemical stimuli in vertebrates. While a great deal of research has focused on the olfactory and gustatory system over the years, it is only recently that significant attention has been devoted to the SCC system. The SCCs are microvillous cells that were first discovered on the skin of fish, and later in amphibians, reptiles, and mammals. Lampreys also possess SCCs that are particularly numerous on cutaneous papillae. However, little is known regarding their precise distribution, innervation, and function. Here, we show that sea lampreys (Petromyzon marinus L.) have cutaneous papillae located around the oral disk, nostril, gill pores, and on the dorsal fins and that SCCs are particularly numerous on these papillae. Tract-tracing experiments demonstrated that the oral and nasal papillae are innervated by the trigeminal nerve, the gill pore papillae are innervated by branchial nerves, and the dorsal fin papillae are innervated by spinal nerves. We also characterized the response profile of gill pore papillae to some chemicals and showed that trout-derived chemicals, amino acids, and a bile acid produced potent responses. Together with a companion study (Suntres et al., Journal of Comparative Neurology, this issue), our results provide new insights on the function and evolution of the SCC system in vertebrates.
Collapse
Affiliation(s)
- Gheylen Daghfous
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.,Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - François Auclair
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Felix Blumenthal
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Tina Suntres
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Jessica Lamarre-Bourret
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Masoud Mansouri
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada
| | - Barbara Zielinski
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Réjean Dubuc
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.,Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, Québec, Canada
| |
Collapse
|
6
|
Stewart TA, Bonilla MM, Ho RK, Hale ME. Adipose fin development and its relation to the evolutionary origins of median fins. Sci Rep 2019; 9:512. [PMID: 30679662 PMCID: PMC6346007 DOI: 10.1038/s41598-018-37040-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
The dorsal, anal and caudal fins of vertebrates are proposed to have originated by the partitioning and transformation of the continuous median fin fold that is plesiomorphic to chordates. Evaluating this hypothesis has been challenging, because it is unclear how the median fin fold relates to the adult median fins of vertebrates. To understand how new median fins originate, here we study the development and diversity of adipose fins. Phylogenetic mapping shows that in all lineages except Characoidei (Characiformes) adipose fins develop from a domain of the larval median fin fold. To inform how the larva's median fin fold contributes to the adipose fin, we study Corydoras aeneus (Siluriformes). As the fin fold reduces around the prospective site of the adipose fin, a fin spine develops in the fold, growing both proximally and distally, and sensory innervation, which appears to originate from the recurrent ramus of the facial nerve and from dorsal rami of the spinal cord, develops in the adipose fin membrane. Collectively, these data show how a plesiomorphic median fin fold can serve as scaffolding for the evolution and development of novel, individuated median fins, consistent with the median fin fold hypothesis.
Collapse
Affiliation(s)
- Thomas A Stewart
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th St, Chicago, IL, 60637, USA.
| | - Melvin M Bonilla
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th St, Chicago, IL, 60637, USA
| | - Robert K Ho
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th St, Chicago, IL, 60637, USA
| | - Melina E Hale
- Department of Organismal Biology and Anatomy, The University of Chicago, 1027 E. 57th St, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
Kéver L, Colleye O, Herrel A, Romans P, Parmentier E. Hearing capacities and otolith size in two ophidiiform species (Ophidion rochei and Carapus acus). J Exp Biol 2014; 217:2517-25. [DOI: 10.1242/jeb.105254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Numerous studies have highlighted the diversity of fish inner ear morphology. However, the function of shape, size, and orientation of the different structures remains poorly understood. The saccule (otolithic endorgan) is considered as the principal hearing organ in fishes and it has been hypothesized that sagitta (saccular otolith) shape and size affect hearing capacities: large sagittae are thought to increase sensitivity. The sagittae of many ophidiids and carapids occupy a large volume inside the neurocranium. Hence they are of great interest to test the size hypothesis. The main aim of this study was to investigate hearing capacities and inner ear morphology in two ophidiiform species: Ophidion rochei and Carapus acus. We used a multidisciplinary approach that combines dissections, μCT-scan examinations, and auditory evoked potential technique. Carapus acus and O. rochei sagittae have similar maximal diameter, both species have larger otoliths than many non-ophidiiform species especially compared to the intra-neurocranium (INC) volume. Both species are sensitive to sounds up to 2100 Hz. Relative to the skull, O. rochei had smaller sagittae than the carapid but better hearing capacities from 300 to 900 Hz and similar sensitivities at 150 Hz and from 1200 to 2100 Hz. Results show that hearing capacities of a fish species cannot be predicted only based on sagitta size. Larger otoliths (in size relative to the skull) may have evolved mainly for performing vestibular functions in fishes, especially those ones that need to execute precise and complex movements.
Collapse
Affiliation(s)
| | | | | | - Pascal Romans
- Observatoire Océanologique-Laboratoire Arago, France
| | | |
Collapse
|