1
|
de Oliveira L, Gower DJ, Wilkinson M, Segall M. Comparative morphology of oral glands in snakes of the family Homalopsidae reveals substantial variation and additional independent origins of salt glands within Serpentes. J Anat 2024; 244:708-721. [PMID: 38234265 PMCID: PMC11021688 DOI: 10.1111/joa.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/19/2024] Open
Abstract
Using diffusible iodine-based contrast-enhanced computed tomography (diceCT), we examined the morphology of the oral glands of 12 species of the family Homalopsidae. Snakes of this family exhibit substantial interspecific morphological variation in their oral glands. Particular variables are the venom glands, ranging from large (e.g., Subsessor bocourti) to small (e.g., Erpeton tentaculatum). The supra- and infralabial glands are more uniform in morphology, being the second most developed in almost all the sampled species. Premaxillary glands distinct from the supralabial glands were observed in five species (Myron richardsonii, Bitia hydroides, Cantoria violacea, Fordonia leucobalia, and Gerarda prevostiana), in addition to Cerberus rynchops, the only species in which this condition was previously documented associated with the excretion of salt. In the three species of the saltwater group of homalopsids (C. violacea, F. leucobalia, and G. prevostiana), the premaxillary glands also extend posteriorly, occupying a large area above the supralabial gland, a condition not observed in any other species of snake studied thus far. Character evolution analyses indicate that premaxillary glands differentiated from the supralabial gland and evolved independently three or four times in the family, always in lineages that invaded marine habitats. Our results suggest that the differentiated premaxillary glands are likely salt glands, as is the case in C. rynchops. If corroborated, this increases to six or seven the number of independent evolutionary origins of salt glands in snakes that have undergone an evolutionary transition to marine life.
Collapse
Affiliation(s)
- Leonardo de Oliveira
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | | | | | | |
Collapse
|
2
|
Oliveira LD, Grazziotin FG, Sánchez-Martínez PM, Sasa M, Flores-Villela O, Prudente ALDC, Zaher H. Phylogenetic and morphological evidence reveals the association between diet and the evolution of the venom delivery system in Neotropical goo-eating snakes. SYST BIODIVERS 2023. [DOI: 10.1080/14772000.2022.2153944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Leonardo De Oliveira
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré, São Paulo, 04263-000, Brazil
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Avenida Vital Brasil, São Paulo, 05503-900, Brazil
| | - Felipe Gobbi Grazziotin
- Laboratório Especial de Coleções Zoológicas, Instituto Butantan, Avenida Vital Brasil, São Paulo, 05503-900, Brazil
| | | | - Mahmood Sasa
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
- Museo de Zoología, Centro de Investigaciones en Biodiversidad y Ecología Tropical, Universidad de Costa Rica, San José, Costa Rica
| | - Oscar Flores-Villela
- Museo de Zoologia ‘Alfonso L. Herrera’, Faculdad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | | | - Hussam Zaher
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré, São Paulo, 04263-000, Brazil
| |
Collapse
|
3
|
Oliveira LD, Nachtigall PG, Vialla VL, Campos PF, Costa-Neves AD, Zaher H, Silva NJD, Grazziotin FG, Wilkinson M, Junqueira-de-Azevedo ILM. Comparing morphological and secretory aspects of cephalic glands among the New World coral snakes brings novel insights on their biological roles. Toxicon 2023; 234:107285. [PMID: 37683698 DOI: 10.1016/j.toxicon.2023.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Oral and other cephalic glands have been surveyed by several studies with distinct purposes. Despite the wide diversity and medical relevance of the New World coral snakes, studies focusing on understanding the biological roles of the glands within this group are still scarce. Specifically, the venom glands of some coral snakes were previously investigated but all other cephalic glands remain uncharacterized. In this sense, performing morphological and molecular analysis of these glands may help better understand their biological role. Here, we studied the morphology of the venom, infralabial, rictal, and harderian glands of thirteen species of Micrurus and Micruroides euryxanthus. We also performed a molecular characterization of these glands from selected species of Micrurus using transcriptomic and proteomic approaches. We described substantial morphological variation in the cephalic glands of New World coral snakes and structural evidence for protein-secreting cells in the inferior rictal glands. Our molecular analysis revealed that the venom glands, as expected, are majorly devoted to toxin production, however, the infralabial and inferior rictal glands also expressed some toxin genes at low to medium levels, despite the marked morphological differences. On the other hand, the harderian glands were dominated by the expression of lipocalins, but do not produce toxins. Our integrative analysis, including the prediction of biological processes and pathways, helped decipher some important traits of cephalic glands and better understand their biology.
Collapse
Affiliation(s)
- Leonardo de Oliveira
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil; Herpetology, The Natural History Museum, London, SW7 5BD, United Kingdom.
| | - Pedro Gabriel Nachtigall
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Vincent Louis Vialla
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Pollyanna F Campos
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | | | - Hussam Zaher
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, 04263-000, São Paulo, Brazil
| | - Nelson Jorge da Silva
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, 74605-140, Brazil
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Mark Wilkinson
- Herpetology, The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| |
Collapse
|
4
|
Pandelis GG, Grundler MC, Rabosky DL. Ecological correlates of cranial evolution in the megaradiation of dipsadine snakes. BMC Ecol Evol 2023; 23:48. [PMID: 37679675 PMCID: PMC10485986 DOI: 10.1186/s12862-023-02157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Dipsadine snakes represent one of the most spectacular vertebrate radiations that have occurred in any continental setting, with over 800 species in South and Central America. Their species richness is paralleled by stunning ecological diversity, ranging from arboreal snail-eating and aquatic eel-eating specialists to terrestrial generalists. Despite the ecological importance of this clade, little is known about the extent to which ecological specialization shapes broader patterns of phenotypic diversity within the group. Here, we test how habitat use and diet have influenced morphological diversification in skull shape across 160 dipsadine species using micro-CT and 3-D geometric morphometrics, and we use a phylogenetic comparative approach to test the contributions of habitat use and diet composition to variation in skull shape among species. RESULTS We demonstrate that while both habitat use and diet are significant predictors of shape in many regions of the skull, habitat use significantly predicts shape in a greater number of skull regions when compared to diet. We also find that across ecological groupings, fossorial and aquatic behaviors result in the strongest deviations in morphospace for several skull regions. We use simulations to address the robustness of our results and describe statistical anomalies that can arise from the application of phylogenetic generalized least squares to complex shape data. CONCLUSIONS Both habitat and dietary ecology are significantly correlated with skull shape in dipsadines; the strongest relationships involved skull shape in snakes with aquatic and fossorial lifestyles. This association between skull morphology and multiple ecological axes is consistent with a classic model of adaptive radiation and suggests that ecological factors were an important component in driving morphological diversification in the dipsadine megaradiation.
Collapse
Affiliation(s)
- Gregory G Pandelis
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Amphibian and Reptile Diversity Research Center, Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019, USA.
| | - Michael C Grundler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
5
|
Moon BR, Penning DA, Segall M, Herrel A. Feeding in Snakes: Form, Function, and Evolution of the Feeding System. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_14] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Oliveira LD, Guerra-Fuentes RA, Zaher H. Embryological evidence of a new type of seromucous labial gland in neotropical snail-eating snakes of the genus Sibynomorphus. ZOOL ANZ 2017. [DOI: 10.1016/j.jcz.2016.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Oliveira LD, Scartozzoni RR, Almeida-Santos SMD, Jared C, Antoniazzi MM, Salomão MDG. Morphology of Duvernoy's Glands and Maxillary Teeth and a Possible Function of the Duvernoy's Gland Secretion inHelicops modestusGünther, 1861 (Serpentes: Xenodontinae). SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2016. [DOI: 10.2994/sajh-d-16-00011.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Snake venoms: A brief treatise on etymology, origins of terminology, and definitions. Toxicon 2015; 103:188-95. [PMID: 26166305 DOI: 10.1016/j.toxicon.2015.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/02/2015] [Indexed: 10/23/2022]
Abstract
The ancient perceptions of "venomous" and "poisonous snakes", as well as the Indo-European (IE) etymological origins of the term "venom" specifically associated with snakes are considered. Although several ancient cultures perceived snakes as symbols of fecundity and renewal, concurrent beliefs also associated venomous snakes with undesirable human characteristics or as portending non-propitious events. The respective IE roots of the terms "venom" and "poison", "wen" and "poi" refer to desire or the act of ingesting liquids. The origin of the term, "venom", is associated with polytheistic cults that emphasized attainment of desires sometimes assisted by "love potions", a term later interpolated with the word, "poison". Specific interpretation of the term, venom, has varied since its first probable use in the mid-Thirteenth Century. The definition of snake venom has long been contended, and interpretations have often reflected emphasis on the pharmacological or experimental toxicity of medically relevant snake venoms with less regard for the basic biological bases of these venoms, as well as those from snakes with no known medical significance. Several definitions of "snake venom" and their defining criteria are reviewed, and critical consideration is given to traditional criteria that might facilitate the future establishment of a biologically accurate definition.
Collapse
|
9
|
Zaher H, de Oliveira L, Grazziotin FG, Campagner M, Jared C, Antoniazzi MM, Prudente AL. Consuming viscous prey: a novel protein-secreting delivery system in neotropical snail-eating snakes. BMC Evol Biol 2014; 14:58. [PMID: 24661572 PMCID: PMC4021269 DOI: 10.1186/1471-2148-14-58] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efficient venom delivery systems are known to occur only in varanoid lizards and advanced colubroidean snakes among squamate reptiles. Although components of these venomous systems might have been present in a common ancestor, the two lineages independently evolved strikingly different venom gland systems. In snakes, venom is produced exclusively by serous glands in the upper jaw. Within the colubroidean radiation, lower jaw seromucous infralabial glands are known only in two distinct lineages-the basal pareatids and the more advanced Neotropical dipsadines known as "goo-eating snakes". Goo-eaters are a highly diversified, ecologically specialized clade that feeds exclusively on invertebrates (e.g., gastropod molluscs and annelids). Their evolutionary success has been attributed to their peculiar feeding strategies, which remain surprisingly poorly understood. More specifically, it has long been thought that the more derived Dipsadini genera Dipsas and Sibynomorphus use glandular toxins secreted by their infralabial glands to extract snails from their shells. RESULTS Here, we report the presence in the tribe Dipsadini of a novel lower jaw protein-secreting delivery system effected by a gland that is not functionally related to adjacent teeth, but rather opens loosely on the oral epithelium near the tip of the mandible, suggesting that its secretion is not injected into the prey as a form of envenomation but rather helps control the mucus and assists in the ingestion of their highly viscous preys. A similar protein-secreting system is also present in the goo-eating genus Geophis and may share the same adaptive purpose as that hypothesized for Dipsadini. Our phylogenetic hypothesis suggests that the acquisition of a seromucous infralabial gland represents a uniquely derived trait of the goo-eating clade that evolved independently twice within the group as a functionally complex protein-secreting delivery system. CONCLUSIONS The acquisition by snail-eating snakes of such a complex protein-secreting system suggests that the secretion from the hypertrophied infralabial glands of goo-eating snakes may have a fundamental role in mucus control and prey transport rather than envenomation of prey. Evolution of a functional secretory system that combines a solution for mucus control and transport of viscous preys is here thought to underlie the successful radiation of goo-eating snakes.
Collapse
Affiliation(s)
- Hussam Zaher
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, São Paulo, SP CEP 04263-000, Brazil
| | - Leonardo de Oliveira
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, São Paulo, SP CEP 04263-000, Brazil
- Programa de Pós Graduação em Zoologia, Universidade Estadual Paulista, Avenida 24A 1515, Rio Claro, SP CEP 13506-900, Brazil
| | - Felipe G Grazziotin
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, São Paulo, SP CEP 04263-000, Brazil
| | - Michelle Campagner
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, São Paulo, SP CEP 04263-000, Brazil
- Museu Biológico, Instituto Butantan, Avenida Vital Brazil 1500, São Paulo, SP CEP 05503-900, Brazil
| | - Carlos Jared
- Laboratório de Biologia Celular, Instituto Butantan, Avenida Vital Brazil 1500, São Paulo, SP CEP 05503-900, Brazil
| | - Marta M Antoniazzi
- Laboratório de Biologia Celular, Instituto Butantan, Avenida Vital Brazil 1500, São Paulo, SP CEP 05503-900, Brazil
| | - Ana L Prudente
- Museu Paraense Emílio Goeldi, Avenida Magalhães Barata 376, Belém, PA CEP 66040-170, Brazil
| |
Collapse
|