1
|
Bogdanov A, Sokolova M, Bakloushinskaya I. Specificity of Key Sex Determination Genes in a Mammal with Ovotestes: The European Mole Talpa europaea. Animals (Basel) 2024; 14:2180. [PMID: 39123706 PMCID: PMC11311037 DOI: 10.3390/ani14152180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Here, for the first time, the structure of genes involved in sex determination in mammals (full Sry and partial Rspo1, Eif2s3x, and Eif2s3y) was analyzed for the European mole Talpa europaea with ovotestes in females. We confirmed male-specificity for Eif2s3y and Sry. Five exons were revealed for Rspo1 and the deep similarity with the structure of this gene in T. occidentalis was proved. The most intriguing result was obtained for the Sry gene, which, in placental mammals, initiates male development. We described two exons for this canonically single-exon gene: the first (initial) exon is only 15 bp while the second exon includes 450 bp. The exons are divided by an extended intron of about 1894 bp, including the fragment of the LINE retroposon. Moreover, in chromatogram fragments, which correspond to intron and DNA areas, flanking both exons, we revealed double peaks, similar to heterozygous nucleotide sites of autosomal genes. This may indicate the existence of two or more copies of the Sry gene. Proof of copies requires an additional in-depth study. We hypothesize that unusual structure and possible supernumerary copies of Sry may be involved in ovotestes formation.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.B.); (M.S.)
| | - Maria Sokolova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.B.); (M.S.)
- Biological Department, Lomonosov State University, 119234 Moscow, Russia
| | - Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (A.B.); (M.S.)
| |
Collapse
|
2
|
Braz HB, Barreto RDSN, da Silva-Júnior LN, Horvath-Pereira BDO, da Silva TS, da Silva MD, Acuña F, Miglino MA. Evolutionary Patterns of Maternal Recognition of Pregnancy and Implantation in Eutherian Mammals. Animals (Basel) 2024; 14:2077. [PMID: 39061539 PMCID: PMC11274353 DOI: 10.3390/ani14142077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The implantation of the embryo into the maternal endometrium is a complex process associated with the evolution of viviparity and placentation in mammals. In this review, we provide an overview of maternal recognition of pregnancy signals and implantation modes in eutherians, focusing on their diverse mechanisms and evolutionary patterns. Different pregnancy recognition signals and implantation modes have evolved in eutherian mammals, reflecting the remarkable diversity of specializations in mammals following the evolution of viviparity. Superficial implantation is the ancestral implantation mode in Eutheria and its major clades. The other modes, secondary, partially, and primary interstitial implantation have each independently evolved multiple times in the evolutionary history of eutherians. Although significant progress has been made in understanding pregnancy recognition signals and implantation modes, there is still much to uncover. Rodents and chiropterans (especially Phyllostomidae) offer valuable opportunities for studying the transitions among implantation modes, but data is still scarce for these diverse orders. Further research should focus on unstudied taxa so we can establish robust patterns of evolutionary changes in pregnancy recognition signaling and implantation modes.
Collapse
Affiliation(s)
| | - Rodrigo da Silva Nunes Barreto
- Department of Animal Morphology and Physiology, Faculty of Agricultural and Veterinary Sciences, São Paulo State University, Jaboticabal 14884-900, SP, Brazil;
| | - Leandro Norberto da Silva-Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
- Department of Veterinary Medicine, University of Marília, Marília 17525-902, SP, Brazil
| | - Bianca de Oliveira Horvath-Pereira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
| | - Thamires Santos da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
| | - Mônica Duarte da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, SP, Brazil; (L.N.d.S.-J.); (B.d.O.H.-P.); (T.S.d.S.); (M.D.d.S.)
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Francisco Acuña
- Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata B1900, Argentina;
| | | |
Collapse
|
3
|
Suzuki M, Nakamura A, Matsumoto Y, Kang W, Ichinose M, Kawano N, Yamada M, Shindo M, Katano D, Saito T, Harada Y, Miyado M, Miyado K. Identification of a syncytin gene in a non-rodent laboratory mammal, Suncus murinus. J Vet Med Sci 2023; 85:912-920. [PMID: 37438116 PMCID: PMC10539813 DOI: 10.1292/jvms.22-0555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
An endogenous retrovirus-derived membrane protein, syncytin (SYN), contributes to placental function via trophoblast fusion. Multinuclear trophoblasts (syncytiotrophoblasts) physically and functionally mediate the interaction between fetal and maternal vessels in various ways. Suncus murinus (suncus) is a small mammalian species with a pregnancy duration of approximately 30 days, 1.5 times longer than mice. However, the molecular basis for the longer pregnancy duration is unknown. In this study, we first isolated two genes that encoded putative SYN proteins expressed in the suncus placenta, which were named syncytin-1-like proteins 1 and 2 (SYN1L1 and SYN1L2). When their expression vectors were introduced into cultured cells, suncus SYN1L2 was found to be active in cell fusion. Moreover, the SYN1L2 protein was homologous to a SYN1-like protein identified in greater mouse-eared bats (bat SYN1L) and was structurally compared with bat SYN1L and other SYN proteins, implying the presence of structural features of the SYN1L2 protein.
Collapse
Affiliation(s)
- Miki Suzuki
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akihiro Nakamura
- Department of Microbiology, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yu Matsumoto
- Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Woojin Kang
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Minoru Ichinose
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Natsuko Kawano
- Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Miyuki Shindo
- Division of Laboratory Animal Resources, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Daiki Katano
- Department of Life Sciences, School of Agriculture, Meiji University, Kanagawa, Japan
| | - Takako Saito
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Yuichirou Harada
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Mami Miyado
- Department of Food and Nutrition, Beppu University, Oita, Japan
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
4
|
Diessler ME, Hernández R, Gomez Castro G, Barbeito CG. Decidual cells and decidualization in the carnivoran endotheliochorial placenta. Front Cell Dev Biol 2023; 11:1134874. [PMID: 37009475 PMCID: PMC10060884 DOI: 10.3389/fcell.2023.1134874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Decidualization is considered a distinctive feature of eutherian pregnancy, and has appeared during evolution along with the development of invasive forms of placentation, as the endotheliochorial placenta. Although decidualization is not massive in carnivores, as it is in most species developing hemochorial placentas, isolated or grouped cells regarded as decidual have been documented and characterized, mainly in bitches and queens. For the majority of the remaining species of the order, data in the bibliography are fragmentary. In this article, general morphological aspects of decidual stromal cells (DSCs), their time of appearance and lasting, data about the expression of cytoskeletal proteins and molecules considered as markers of decidualization were reviewed. From the data reviewed, it follows that carnivoran DSCs take part either in the secretion of progesterone, prostaglandins, relaxin, among other substances, or at least in the signaling pathways triggered by them. Beyond their physiological roles, some of those molecules are already being used, or are yet under study, for the non-invasive endocrine monitoring and reproductive control of domestic and wild carnivores. Only insulin-like growth factor binding protein 1, among the main decidual markers, has been undoubtedly demonstrated in both species. Laminin, on the contrary, was found only in feline DSCs, and prolactin was preliminary reported in dogs and cats. Prolactin receptor, on the other hand, was found in both species. While canine DSCs are the only placental cell type expressing the nuclear progesterone receptor (PGR), that receptor has not been demonstrated neither in feline DSCs, nor in any other cell in the queen placenta, although the use of PGR blockers leads to abortion. Against this background, and from the data gathered so far, it is unquestionable that DSCs in carnivorans do play a pivotal role in placental development and health. The knowledge about placental physiology is critical for medical care and breeding management, primarily in domestic carnivores; it is also absolutely crucial for a conservation approach in the management of endangered carnivore species.
Collapse
Affiliation(s)
- Mónica Elizabeth Diessler
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- *Correspondence: Mónica Elizabeth Diessler,
| | - Rocío Hernández
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
| | - Gimena Gomez Castro
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| | - Claudio Gustavo Barbeito
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (FCV, UNLP), La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), FCV, UNLP, La Plata, Argentina
| |
Collapse
|
5
|
Dudley JS, Murphy CR, Thompson MB, McAllan BM. Uterine cellular changes during mammalian pregnancy and the evolution of placentation. Biol Reprod 2021; 105:1381-1400. [PMID: 34514493 DOI: 10.1093/biolre/ioab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
There are many different forms of nutrient provision in viviparous (live bearing) species. The formation of a placenta is one method where the placenta functions to transfer nutrients from mother to fetus (placentotrophy), transfer waste from the fetus to the mother and respiratory gas exchange. Despite having the same overarching function, there are different types of placentation within placentotrophic vertebrates, and many morphological changes occur in the uterus during pregnancy to facilitate formation of the placenta. These changes are regulated in complex ways but are controlled by similar hormonal mechanisms across species. This review describes current knowledge of the morphological and molecular changes to the uterine epithelium preceding implantation among mammals. Our aim is to identify the commonalities and constraints of these cellular changes to understand the evolution of placentation in mammals and propose directions for future research. We compare and discuss the complex modifications to the ultrastructure of uterine epithelial cells and show that there are similarities in the changes to the cytoskeleton and gross morphology of the uterine epithelial cells, especially of the apical and lateral plasma membrane of the cells during the formation of a placenta in all eutherians and marsupials studied to date. We conclude that further research is needed to understand the evolution of placentation among viviparous mammals, particularly concerning the level of placental invasiveness, hormonal control and genetic underpinnings of pregnancy in marsupial taxa.
Collapse
Affiliation(s)
- Jessica S Dudley
- School of Life and Environmental Science, University of Sydney, Sydney, NSW 2006, Australia.,School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia.,Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, NSW, 2109, Australia
| | - Christopher R Murphy
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| | - Michael B Thompson
- School of Life and Environmental Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Bronwyn M McAllan
- School of Life and Environmental Science, University of Sydney, Sydney, NSW 2006, Australia.,School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Abstract
Significant advances have been observed in the field of cell biology, with numerous studies exploring the molecular genetic pathways that have contributed to species evolution and disease development. The current study adds to the existing body of research evidence by reviewing information related to the role of leftover viruses and/or viral remnants in human physiology. To explore leftover viruses, their incorporation, and their roles in human physiology. The study entailed conducting a systematic search in the PsycINFO, PubMed, Web of Science, and CINAHL databases to locate articles related to the topic of investigation. The search terms included “leftovers,” “viruses,” “genome sequences,” “transposable elements,” “immune response,” and “evolution.” Additional articles were selected from the references of the studies identified in the electronic databases. Evidence showed that both retroviruses and nonretroviruses can be integrated into the human germline via various mechanisms. The role of leftover viruses in human physiology has been explored by studying the activation of human retroviral genes in the human placenta, RNA transfer between neurons through virus-like particles, and RNA transfer through extracellular vesicles. Research evidence suggested that leftover viruses play key roles in human physiology. A more complete understanding of the underlying pathways may provide an avenue for studying human evolution and allow researchers to determine the pathogenesis of some viral infections. Evidence obtained in this review shows that leftover viruses may be incorporated into the human genome. Retroviral genes are critical for the development of different parts of the body, such as the placenta in mammals.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Feulgenstr. 12, 35392, Giessen, Germany.
| |
Collapse
|
7
|
Blackburn DG, Stewart JR. Morphological research on amniote eggs and embryos: An introduction and historical retrospective. J Morphol 2021; 282:1024-1046. [PMID: 33393149 DOI: 10.1002/jmor.21320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/21/2022]
Abstract
Evolution of the terrestrial egg of amniotes (reptiles, birds, and mammals) is often considered to be one of the most significant events in vertebrate history. Presence of an eggshell, fetal membranes, and a sizeable yolk allowed this egg to develop on land and hatch out well-developed, terrestrial offspring. For centuries, morphologically-based studies have provided valuable information about the eggs of amniotes and the embryos that develop from them. This review explores the history of such investigations, as a contribution to this special issue of Journal of Morphology, titled Developmental Morphology and Evolution of Amniote Eggs and Embryos. Anatomically-based investigations are surveyed from the ancient Greeks through the Scientific Revolution, followed by the 19th and early 20th centuries, with a focus on major findings of historical figures who have contributed significantly to our knowledge. Recent research on various aspects of amniote eggs is summarized, including gastrulation, egg shape and eggshell morphology, eggs of Mesozoic dinosaurs, sauropsid yolk sacs, squamate placentation, embryogenesis, and the phylotypic phase of embryonic development. As documented in this review, studies on amniote eggs and embryos have relied heavily on morphological approaches in order to answer functional and evolutionary questions.
Collapse
Affiliation(s)
- Daniel G Blackburn
- Department of Biology and Electron Microscopy Center, Trinity College, Hartford, Connecticut, USA
| | - James R Stewart
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
8
|
Ferner K, Schultz JA, Zeller U. Comparative anatomy of neonates of the three major mammalian groups (monotremes, marsupials, placentals) and implications for the ancestral mammalian neonate morphotype. J Anat 2017; 231:798-822. [PMID: 28960296 PMCID: PMC5696127 DOI: 10.1111/joa.12689] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 12/16/2022] Open
Abstract
The existing different modes of reproduction in monotremes, marsupials and placentals are the main source for our current understanding of the origin and evolution of the mammalian reproduction. The reproductive strategies and, in particular, the maturity states of the neonates differ remarkably between the three groups. Monotremes, for example, are the only extant mammals that lay eggs and incubate them for the last third of their embryonic development. In contrast, marsupials and placentals are viviparous and rely on intra-uterine development of the neonates via choriovitelline (mainly marsupials) and chorioallantoic (mainly placentals) placentae. The maturity of a newborn is closely linked to the parental care strategy once the neonate is born. The varying developmental degrees of neonates are the main focus of this study. Monotremes and marsupials produce highly altricial and nearly embryonic offspring. Placental mammals always give birth to more developed newborns with the widest range from altricial to precocial. The ability of a newborn to survive and grow in the environment it was born in depends highly on the degree of maturation of vital organs at the time of birth. Here, the anatomy of four neonates of the three major extant mammalian groups is compared. The basis for this study is histological and ultrastructural serial sections of a hatchling of Ornithorhynchus anatinus (Monotremata), and neonates of Monodelphis domestica (Marsupialia), Mesocricetus auratus (altricial Placentalia) and Macroscelides proboscideus (precocial Placentalia). Special attention was given to the developmental stages of the organs skin, lung, liver and kidney, which are considered crucial for the maintenance of vital functions. The state of the organs of newborn monotremes and marsupials are found to be able to support a minimum of vital functions outside the uterus. They are sufficient to survive, but without capacities for additional energetic challenges. The organs of the altricial placental neonate are further developed, able to support the maintenance of vital functions and short-term metabolic increase. The precocial placental newborn shows the most advanced state of organ development, to allow the maintenance of vital functions, stable thermoregulation and high energetic performance. The ancestral condition of a mammalian neonate is interpreted to be similar to the state of organ development found in the newborns of marsupials and monotremes. In comparison, the newborns of altricial and precocial placentals are derived from the ancestral state to a more mature developmental degree associated with advanced organ systems.
Collapse
Affiliation(s)
- Kirsten Ferner
- Leibniz‐Institut für Evolutions‐ und BiodiversitätsforschungMuseum für NaturkundeBerlinGermany
| | - Julia A. Schultz
- Department of Organismal Biology and AnatomyUniversity of ChicagoChicagoILUSA
| | - Ulrich Zeller
- Lebenswissenschaftliche FakultätFG Spezielle ZoologieAlbrecht Daniel Thaer‐Institut für Agrar‐ und GartenbauwissenschaftenHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
9
|
Zeller U, Starik N, Göttert T. Biodiversity, land use and ecosystem services—An organismic and comparative approach to different geographical regions. Glob Ecol Conserv 2017. [DOI: 10.1016/j.gecco.2017.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Morphology, histochemistry and glycosylation of the placenta and associated tissues in the European hedgehog (Erinaceus europaeus). Placenta 2016; 48:1-12. [PMID: 27871459 DOI: 10.1016/j.placenta.2016.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION There are few descriptions of the placenta and associated tissues of the European hedgehog (Erinaceus europaeus) and here we present findings on a near-term pregnant specimen. METHODS Tissues were examined grossly and then formalin fixed and wax-embedded for histology and immunocytochemistry (cytokeratin) and resin embedded for lectin histochemistry. RESULTS Each of four well-developed and near term hoglets displayed a discoid, haemochorial placenta with typical labyrinth and spongy zones. In addition there was a paraplacenta incorporating Reichert's membrane and a largely detached yolk sac. The trophoblast of the placenta contained diverse populations of granule which expressed most classes of glycan. Intercellular membranes were also glycosylated and this tended to be heavier in the labyrinth zone. Fetal capillary endothelium had glycosylated apical surfaces expressing sialic acid and various other glycans. Glycogen was present in large cells situated between the spongy zone and the endometrium. Trophoblast cells in the placental disc and under Reichert's membrane, as well as yolk sac endoderm and mesothelium, were cytokeratin positive. Reichert's membrane was heavily glycosylated. Yolk sac inner and outer endoderm expressed similar glycans except for N-acetylgalactosamine residues in endodermal acini. DISCUSSION New features of near-term hedgehog placenta and associated tissues are presented, including their glycosylation, and novel yolk sac acinar structures are described. The trophoblast of the placental disc showed significant differences from that underlying Reichert's membrane while the glycan composition of the membrane itself showed some similarity to that of rat thereby implying a degree of biochemical conservation of this structure.
Collapse
|
11
|
Kakabadze A, Kakabadze Z. Prospect of using decellularized human placenta and cow placentome for creation of new organs: targeting the liver (part I: anatomic study). Transplant Proc 2016; 47:1222-7. [PMID: 26036559 DOI: 10.1016/j.transproceed.2014.09.181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023]
Abstract
INTRODUCTION This paper presents anatomic studies of decellularized human placenta and cow placentome and proves that there is a possibility to create a scaffold using the natural microvascular structure for growing organs and tissues. MATERIALS AND METHODS The anatomic studies were conducted on 20 full-term placentas from human donors, and placentomes collected from 8 cows. Before the anatomic studies of human placenta and cow placentome, decellularization was conducted. For visualization of vessels, 50% Latex in water (Nairit L3) through the umbilical cord artery and vein was injected. Corrosion casts were also prepared. RESULTS An important feature in the transplantation of microfragments of the liver tissue is the blood supply system of the piled chorion, which consists of the main vascular trunks, and perivascular and superficial capillary network. Conditionally, based on the degree of difficulty, there are several types of grouping of the capillaries in terminal pile: simple capillary knot, coiled capillary knot, and complexly organized tangle-shaped capillary network with the richly anastomosing crimped microvessels. A similar pattern was observed in the terminal pile of the placentomes of the cow. For the creation of the auxiliary liver and connection of it into the systemic circulation of the recipient, we can use this exclusiveness of the angioarchitechtonics. CONCLUSIONS Anatomic studies demonstrated that decellularized human placenta, as well as cow placentome, can be used as a scaffold for growth of organs and tissues in vitro and in vivo.
Collapse
Affiliation(s)
- A Kakabadze
- Center of Stem Cells and Tissue Engineering, Ilia State University, Tbilisi, Georgia.
| | - Z Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| |
Collapse
|
12
|
Blackburn DG, Starck JM. Morphological specializations for fetal maintenance in viviparous vertebrates: An introduction and historical retrospective. J Morphol 2015; 276:E1-16. [DOI: 10.1002/jmor.20410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/11/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel G. Blackburn
- Department of Biology; and Electron Microscopy Center; Trinity College; Hartford Connecticut 06106
| | - J. Matthias Starck
- Department of Biology; University of Munich; D-82152 Planegg-Martinsried Germany
| |
Collapse
|
13
|
Placental Evolution within the Supraordinal Clades of Eutheria with the Perspective of Alternative Animal Models for Human Placentation. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/639274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here a survey of placental evolution is conducted. Placentation is a key factor for the evolution of placental mammals that had evolved an astonishing diversity. As a temporary organ that does not allow easy access, it is still not well understood. The lack of data also is a restriction for better understanding of placental development, structure, and function in the human. Animal models are essential, because experimental access to the human placenta is naturally restricted. However, there is not a single ideal model that is entirely similar to humans. It is particularly important to establish other models than the mouse, which is characterised by a short gestation period and poorly developed neonates that may provide insights only for early human pregnancy. In conclusion, current evolutionary studies have contributed essentially to providing a pool of experimental models for recent and future approaches that may also meet the requirements of a long gestation period and advanced developmental status of the newborn in the human. Suitability and limitations of taxa as alternative animal models are discussed. However, further investigations especially in wildlife taxa should be conducted in order to learn more about the full evolutionary plasticity of the placenta system.
Collapse
|