1
|
Wang Y, Fabuleux Tresor Baniakina L, Chai L. Response characteristic and potential molecular mechanism of tail resorption in Bufo gargarizans after exposure to lead and copper, alone or combined. ENVIRONMENTAL RESEARCH 2024; 259:119505. [PMID: 38945509 DOI: 10.1016/j.envres.2024.119505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Tail resorption during amphibian metamorphosis is one of the most dramatic processes that is obligatorily dependent on thyroid hormone (TH). Heavy metals could result in thyroid gland damages and disturb TH homeostasis. Lead (Pb) and copper (Cu) often co-exist in natural aquatic ecosystems. However, there is still little information on how tail resorption responds to alone or combined exposure to Pb and Cu. Our study investigated the effects of Pb and Cu alone or combined exposure on the morphological parameters of the tail, histological changes of thyroid gland and tail, and gene expression programs involved in cell death of the tail in Bufo gargarizans tadpoles at the climax of metamorphosis. Results demonstrated that Pb, Cu and Pb-Cu mixture exposure resulted in a significantly longer tail compared with control. Damages to notochord, muscle, skin and spinal cord of the tail were found in Pb and Cu exposure groups. The colloid area, the height of follicular cells and number of phagocytic vesicles of thyroid gland in Pb-Cu mixture exposure groups were significantly reduced. In addition, the expression levels of TH, apoptosis, autophagy, degradation of cellular components and oxidative stress-related genes in the tail were significantly altered following Pb and Cu exposure. The present work revealed the relationship between environmental pollutants and tail resorption, providing scientific basis for amphibian protection.
Collapse
Affiliation(s)
- Yaxi Wang
- School of Water and Environment, Chang' an University, Xi'an, 710054, China; College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Lod Fabuleux Tresor Baniakina
- School of Water and Environment, Chang' an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang' an University, Xi'an, 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang' an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang' an University, Xi'an, 710054, China.
| |
Collapse
|
2
|
Monteiro JPP, Dos Santos CCM, de Queiroz JPM, das Chagas RA, Loureiro SN, Nauar AR, Souza-Ferreira MLC, Cardoso AL, Martins C, Petrović TG, Prokić MD, Oliveira-Bahia VRL, Amado LL. Natural modulation of redox status throughout the ontogeny of Amazon frog Physalaemus ephippifer (Anura, Leptodactylidae). Sci Rep 2024; 14:20655. [PMID: 39232193 PMCID: PMC11375210 DOI: 10.1038/s41598-024-71022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
During their development, amphibians undergo various physiological processes that may affect their susceptibility to environmental pollutants. Naturally occurring fluctuations caused by developmental events are often overlooked in ecotoxicological studies. Our aim is to investigate how biomarkers of oxidative stress are modulated at different stages of larval development in the Amazonian amphibian species, Physalaemus ephippifer. The premetamorphosis, prometamorphosis and metamorphic climax stages were used to analyze total antioxidant capacity (ACAP), glutathione S-transferase (GST) activity, lipid peroxidation (LPO) levels and the expression of genes nrf2, gst, gsr (glutathione reductase) and gclc (glycine-cysteine ligase, catalytic subunit). Although there was no difference in ACAP and the genes expression among the studied stages, individuals from the premetamorphosis and prometamorphosis showed higher GST activity than ones under the climax. LPO levels were highest in individuals from the metamorphic climax. The present study suggests that the oxidative status changes during ontogeny of P. ephippifer tadpoles, especially during the metamorphic climax, the most demanding developmental phase. Variations in the redox balance at different developmental stages may lead to a divergent response to pollution. Therefore, we recommend that studies using anuran larvae as biomonitors consider possible physiological differences during ontogeny in their respective analyses.
Collapse
Affiliation(s)
- João Pedro Pantoja Monteiro
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil
- Laboratório Multidisciplinar de Morfofisiologia Animal, Instituto de Ciências Biológicas (UFPA), Belém, Brazil
| | - Carla Carolina Miranda Dos Santos
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica (UFPA), Belém, Brazil
| | - João Paulo Moura de Queiroz
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil
| | - Rafael Anaisce das Chagas
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Centro Nacional de Pesquisa e Conservação da Biodiversidade Marinha Do Norte - CEPNOR/ICMBio, Belém, PA, Brazil
| | - Sarita Nunes Loureiro
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Oceanografia (UFPA), Belém, Brazil
| | - Alana Rodrigues Nauar
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica (UFPA), Belém, Brazil
| | - Maria Luiza Cunha Souza-Ferreira
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil
- Laboratório Multidisciplinar de Morfofisiologia Animal, Instituto de Ciências Biológicas (UFPA), Belém, Brazil
| | - Adauto Lima Cardoso
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, São Paulo, Brazil
| | - Cesar Martins
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, São Paulo, Brazil
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108, Belgrade, Serbia
| | | | - Lílian Lund Amado
- Laboratório de Pesquisas em Monitoramento Ambiental Marinho e Laboratório de Ecotoxicologia, Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Rua Augusto Corrêa 01, Belém, PA, 66075-110, Brazil.
- Programa de Pós-Graduação em Ecologia Aquática e Pesca (UFPA), Belém, Brazil.
- Programa de Pós-Graduação em Farmacologia e Bioquímica (UFPA), Belém, Brazil.
- Programa de Pós-Graduação em Oceanografia (UFPA), Belém, Brazil.
| |
Collapse
|
3
|
Wang H, Liu Y, Chai L, Wang H. Morphology and molecular mechanisms of tail resorption during metamorphosis in Rana chensinensis tadpole (Anura: Ranidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 41:100945. [PMID: 34864614 DOI: 10.1016/j.cbd.2021.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The tail resorption process was an inevitable and pivotal transformation during amphibian metamorphosis. The present study investigated the mechanisms of tail resorption through histological and transcriptome analysis in Rana chensinensis. The results showed that tail resorption was initiated before the onset of metamorphic climax, and dramatically regressed after metamorphic climax by external-morphology measurement. The drastic disintegration of tail muscle and notochord occurred at Gs42-44, which were consistent with the trend of thyroid follicular cell height. Besides, expression level analysis and functional annotation of DEGs (differentially expressed genes) were conducted through RNA-seq analysis of the tail. Our study also analyzed the expression of genes related to oxidative stress, autophagy, apoptosis and degradation of cellular components in the tail of R. chensinensis. This study enriched the R. chensinensis transcriptome database and laid the foundation of further analysis of tail resorption.
Collapse
Affiliation(s)
- Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
4
|
Vassilieva AB, Smirnov SV. Increasing Hormonal Control of Skeletal Development: An Evolutionary Trend in Amphibians. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.733947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The biphasic life history of amphibians includes metamorphosis, a complex developmental event that involves drastic changes in the morphology, physiology and biochemistry accompanying the transition from the larval to adult stage of development. Thyroid hormones (THs) are widely known to orchestrate this remodeling and, in particular, to mediate the development of the bony skeleton, which is a model system in evolutionary morphological studies of amphibians. Detailed experimental studies of the role of THs in the craniogenesis of diverse urodelan amphibians revealed that (i) these hormones affect both the timing and sequence of bone formation, (ii) TH involvement increases in parallel with the increase in divergence between larval and adult skull morphology, and (iii) among urodelans, TH-involvement in skull development changes from a minimum in basal salamanders (Hynobiidae) to the most pronounced in derived ones (Salamandridae and Plethodontidae). Given the increasing regulatory function of THs in urodelan evolution, we hypothesized a stronger involvement of THs in the control of skeletogenesis in anurans with their most complex and dramatic metamorphosis among all amphibians. Our experimental study of skeletal development in the hypo- and hyperthyroid yellow-bellied toad (Bombina variegata: Bombinatoridae) supports the greater involvement of THs in the mediation of all stages of anuran cranial and postcranial bones formation. Similar to urodelans, B. variegata displays enhancing TH involvement in the development of cranial bones that arise during larval ontogeny: while the hormonal impact on early larval ossifications is minimal, the skull bones forming during metamorphosis are strictly TH-inducible. However, in contrast to urodelans, all cranial bones, including the earliest to form, are TH-dependent in B. variegata; moreover, the development of all elements of the axial and limb skeleton is affected by THs. The more accentuated hormonal control of skeletogenesis in B. variegata demonstrates the advanced regulatory and inductive function of THs in the orchestration of anuran metamorphosis. Based on these findings, we discuss (i) changes in THs function in amphibian evolution and (ii) the role of THs in the evolution of life histories in amphibians.
Collapse
|
5
|
Fabrezi M, Cruz JC. Phenotypic Variation Through Ontogeny: Thyroid Axis Disruption During Larval Development in the Frog Pleurodema borellii. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.715988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies of the effects of thyroid hormones on larval development in the frog Xenopus spp. have provided baseline information to identify developmental constraints and elucidate genetic and hormonal mechanisms driving development, growth, and life history transitions. However, this knowledge requires data based on other anurans to complete a comprehensive approach to the understanding of larval developmental diversity and phenotypic variation through ontogeny. Mesocosm experiments provide realistic data about environmental conditions and timing; this information is useful to describe anuran larval development and/or analyze endocrine disruption. In this study, mesocosm experiments of the larval development of the frog Pleurodema borellii were conducted to explore the consequences of thyroid axis disruption; the sensitivity of tadpoles to the methimazole (2.66 mg/l) and thyroxine (T4) (1.66 μg/l) was compared. These concentrations were selected based on previous studies in Pleurodema borellii. We test the effects of methimazole and thyroxine on development in early exposure (from beginning of larval development) and late exposure, 18 days after hatching, with doses administered every 48 h. Tadpoles were evaluated 31 days after hatching. Methimazole caused moderate hypertrophy of the thyroid gland, alteration in the growth rates, differentiation without inhibition of development, and an increase of developmental variability. Thyroxine produced slight atrophy of the thyroid gland, accelerated growth rates and differentiation, and minor developmental variability. In tadpoles at stages previous to metamorphose, skull development (differentiation of olfactory capsules, appearance of dermal bones, and cartilage remodeling) seemed to be unaltered by the disruptors. Moreover, similar abnormal morphogenesis converged in specimens under methimazole and thyroxine exposures. Abnormalities occurred in pelvic and pectoral girdles, and vent tube, and could have been originated at the time of differentiation of musculoskeletal tissues of girdles. Our results indicate that premetamorphic stages (Gosner Stages 25–35) are sensitive to minimal thyroid axis disruption, which produces changes in developmental rates; these stages would also be critical for appendicular musculoskeletal morphogenesis to achieve the optimal condition to start metamorphosis.
Collapse
|
6
|
Phuge S, Sequeira A, Pandit R. Effect of ethylenethiourea on metamorphosis and ovary development: A comparative study of three larval frogs. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:469-476. [PMID: 33830665 DOI: 10.1002/jez.2464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 11/10/2022]
Abstract
Amphibian endocrine systems interact with each other during normal development. Interference with one of the endocrine systems may influence others. We studied the effect of a thyroid inhibitor (ethylenethiourea [ETU]) on metamorphosis and ovary development of three species, Sphaerotheca pashchima, Indosylvirana caesari, and Euphlyctis cyanophlyctis with different larval durations. We treated the tadpoles of these species with 50, 100, and 200 mg/L concentrations of ETU and studied their larval duration, size at metamorphosis, and ovary development. The results revealed that ETU affects metamorphosis, depending on the species and concentration. ETU delayed metamorphosis of E. cyanophlyctis tadpoles and did not affect metamorphosis in S. pashchima tadpoles. Lower concentrations of ETU stimulated metamorphosis in I. caesari tadpoles while high concentration delayed metamorphosis. In the tadpoles (E. cyanophlyctis) treated with higher concentrations of ETU, ovary development was advanced with an increased size of the diplotene oocytes. Oocyte size was smaller in the tadpoles (of I. caesari) treated with lower concentrations of ETU. These results demonstrated that the tadpoles of these species show different responses to the thyroid inhibitor, possibly due to the differences in the larval duration and sensitivity. Inhibition or acceleration of metamorphosis did not interfere in the ovary development of E. cyanophlyctis and I. caesari. These results will be useful in understanding the impact of endocrine disruptors on the interaction between thyroid and sex steroid hormones.
Collapse
Affiliation(s)
- Samadhan Phuge
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Andrea Sequeira
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Radhakrishna Pandit
- Department of Zoology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
7
|
Naumann B, Schweiger S, Hammel JU, Müller H. Parallel evolution of direct development in frogs - Skin and thyroid gland development in African Squeaker Frogs (Anura: Arthroleptidae: Arthroleptis). Dev Dyn 2021; 250:584-600. [PMID: 33354814 DOI: 10.1002/dvdy.275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cases of parallel evolution offer the possibility to identify adaptive traits and to uncover developmental constraints on the evolutionary trajectories of these traits. The independent evolution of direct development from the ancestral biphasic life history in frogs is such a case of parallel evolution. In frogs, aquatic larvae (tadpoles) differ profoundly from their adult forms and exhibit a stunning diversity regarding their habitats, morphology and feeding behaviors. The transition from the tadpole to the adult is a climactic, thyroid hormone (TH)-dependent process of profound and fast morphological rearrangement called metamorphosis. One of the organ systems that experiences the most comprehensive metamorphic rearrangements is the skin. Direct-developing frogs lack a free-swimming tadpole and hatch from terrestrial eggs as fully formed froglets. In the few species examined, development is characterized by the condensed and transient formation of some tadpole-specific features and the early formation of adult-specific features during a "cryptic" metamorphosis. RESULTS We show that skin in direct-developing African squeaker frogs (Arthroleptis) is also repatterned from a tadpole-like to an adult-like histology during a cryptic metamorphosis. This repatterning correlates with histological thyroid gland maturation. A comparison with data from the Puerto Rican coqui (Eleutherodactylus coqui) reveals that the evolution of direct development in these frogs is associated with a comparable heterochronic shift of thyroid gland maturation. CONCLUSION This suggests that the development of many adult features is still dependent on, and possibly constrained by, the ancestral dependency on thyroid hormone signaling.
Collapse
Affiliation(s)
| | - Susan Schweiger
- Institut für Zoologie und Evolutionsforschung, Jena, Germany
| | - Jörg U Hammel
- Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung, Außenstelle am DESY, Hamburg, Germany
| | - Hendrik Müller
- Institut für Zoologie und Evolutionsforschung, Jena, Germany.,Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.,Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|
8
|
Cruz JC. Histo‐morphology of the thyroid gland during the larval development of
Pleurodema borellii
(Anura, Leptodactylidae). ACTA ZOOL-STOCKHOLM 2020. [DOI: 10.1111/azo.12354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Julio César Cruz
- Instituto de Bio y Geociencias del NOA CCT CONICET Salta‐Jujuy Salta Argentina
| |
Collapse
|