1
|
Moore BC, Kelly DA, Piva M, Does M, Kim DK, Simoncini M, Leiva PML, Pina CI. Genital anatomy and copulatory interactions in the broad snouted Caiman (Caiman latirostris). Anat Rec (Hoboken) 2021; 305:3075-3087. [PMID: 34236769 DOI: 10.1002/ar.24699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/29/2021] [Indexed: 11/09/2022]
Abstract
The broad snouted caiman is a crocodylian native to South America that is subject to extensive conservation management in both wild and farming environments. Although reproductive behaviors like egg laying and clutch care have been examined in this species, little else is known about their copulatory system. We examined the anatomy of male and female cloacal and genital tissues ex vivo to build hypotheses of their interactions during copulation and the effects of that interaction on insemination. Male phallic glans tissues were artificially inflated to expand into their copulatory state, allowing the examination and quantification of structural changes at the gross and tissue levels. Digital reconstruction of MRI stacks yielded three-dimensional tissue compartment specific glans models of the inflated state. Silicone molds of female cloacae and oviducts in conjunction with dissection and diceCT analysis allowed us to assess internal geometry and infer how male and female features interact in copulo. We observed glans expansion within the female proctodeum would result in a copulatory lock limiting deeper intromission or retraction. Intromission and subsequent creation of the copulatory lock produces extensive clitoral compression, providing a possible mechanism for female assessment of male copulatory performance. Further, glans expansion forms a distal lumen that positions the glans tip in or near the vaginal openings. A coiled, muscular vagina provides a possible mechanism for postcopulatory sexual selection by excluding semen. Together, the complex male-female interaction supports evidence for cryptic selection by female choice, which can act as a driver of genital coevolution.
Collapse
Affiliation(s)
- Brandon C Moore
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA.,Deartment of Biology, School of Health Sciences, Stephens College, Columbia, Missouri, USA
| | - Diane A Kelly
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Milan Piva
- Department of Biomedical Science, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Mark Does
- Department of Biomedical Engineering, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Dong Kyu Kim
- Department of Biomedical Engineering, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Melina Simoncini
- CICyTTP (CONICET-Prov. ER-UADER), Proyecto Yacare, FCYT/UADER, Diamante, Entre Ríos, Argentina
| | - Pamela M L Leiva
- CICyTTP (CONICET-Prov. ER-UADER), Proyecto Yacare, FCYT/UADER, Diamante, Entre Ríos, Argentina
| | - Carlos I Pina
- CICyTTP (CONICET-Prov. ER-UADER), Proyecto Yacare, FCYT/UADER, Diamante, Entre Ríos, Argentina
| |
Collapse
|
2
|
Moore BC, Brennan PLR, Francis R, Penland S, Shiavone K, Wayne K, Woodward AR, Does MD, Kim DK, Kelly DA. Glans inflation morphology and female cloaca copulatory interactions of the male American alligator phallus†. Biol Reprod 2020; 104:374-386. [PMID: 33112370 DOI: 10.1093/biolre/ioaa197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/15/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022] Open
Abstract
The phallic glans of the American alligator (Alligator mississippiensis) is the distal termination of the semen-conducting sulcus spermaticus and during copulation has the closest, most intimate mechanical interactions with the female urodeum, the middle cloacal chamber that contains the opening to the vaginal passages and oviducts. However, the details of this interface leading to insemination and gamete uptake are unclear. Here, we: (1) histologically characterize the underlying tissue types and morphologically quantify the shape changes associated with glans inflation into the copulatory conformation, (2) digitally reconstruct from MRI the 3D shape of functional tissue compartments, and (3) diffusible iodine-based contrast-enhanced computed tomography image the copulatory fit between male phallus and female cloaca. We discuss these results in relation to tissue type material properties, the transfer on intromittent forces, establishing potential copulatory lock, inflated glans volume scaling with body mass/length, the mechanics of semen targeting and insemination, and potential female cryptic choice impacting multiple clutch paternity. In part, this study further clarifies the phallic morphological variation observed among crocodylians and begins to investigate the role(s) these divergent male forms play during copulation interacting with female cloacal forms to increase reproductive success.
Collapse
Affiliation(s)
- Brandon C Moore
- College of Veterinary Medicine, Department of Biomedical Science, University of Missouri, Columbia, MO, USA.,Biology Department, Sewanee: The University of the South, Sewanee, TN, USA
| | | | - Rachel Francis
- Biology Department, Sewanee: The University of the South, Sewanee, TN, USA
| | - Samuel Penland
- Biology Department, Sewanee: The University of the South, Sewanee, TN, USA
| | - Kelsie Shiavone
- Biology Department, Sewanee: The University of the South, Sewanee, TN, USA
| | - Kathryn Wayne
- Biology Department, Sewanee: The University of the South, Sewanee, TN, USA
| | - Allan R Woodward
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Gainesville, FL, USA
| | - Mark D Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Dong Kyu Kim
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Diane A Kelly
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst MA, USA
| |
Collapse
|