1
|
Botti V, Cannistraro S, Bizzarri AR. Interaction of miR-155 with Human Serum Albumin: An Atomic Force Spectroscopy, Fluorescence, FRET, and Computational Modelling Evidence. Int J Mol Sci 2022; 23:ijms231810728. [PMID: 36142640 PMCID: PMC9504641 DOI: 10.3390/ijms231810728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study investigated the interaction between Human Serum Albumin (HSA) and microRNA 155 (miR-155) through spectroscopic, nanoscopic and computational methods. Atomic force spectroscopy together with static and time-resolved fluorescence demonstrated the formation of an HSA/miR-155 complex characterized by a moderate affinity constant (KA in the order of 104 M−1). Förster Resonance Energy Transfer (FRET) experiments allowed us to measure a distance of (3.9 ± 0.2) nm between the lone HSA Trp214 and an acceptor dye bound to miR-155 within such a complex. This structural parameter, combined with computational docking and binding free energy calculations, led us to identify two possible models for the structure of the complex, both characterized by a topography in which miR-155 is located within two positively charged pockets of HSA. These results align with the interaction found for HSA and miR-4749, reinforcing the thesis that native HSA is a suitable miRNA carrier under physiological conditions for delivering to appropriate targets.
Collapse
|
2
|
Abstract
Aminoglycoside antibiotics are protein synthesis inhibitors applied to treat infections caused mainly by aerobic Gram-negative bacteria. Due to their adverse side effects they are last resort antibiotics typically used to combat pathogens resistant to other drugs. Aminoglycosides target ribosomes. We describe the interactions of aminoglycoside antibiotics containing a 2-deoxystreptamine (2-DOS) ring with 16S rRNA. We review the computational studies, with a focus on molecular dynamics (MD) simulations performed on RNA models mimicking the 2-DOS aminoglycoside binding site in the small ribosomal subunit. We also briefly discuss thermodynamics of interactions of these aminoglycosides with their 16S RNA target.
Collapse
|
3
|
Electrostatic interactions in aminoglycoside-RNA complexes. Biophys J 2015; 108:655-65. [PMID: 25650932 DOI: 10.1016/j.bpj.2014.12.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/21/2022] Open
Abstract
Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity.
Collapse
|
4
|
Panecka J, Mura C, Trylska J. Interplay of the bacterial ribosomal A-site, S12 protein mutations and paromomycin binding: a molecular dynamics study. PLoS One 2014; 9:e111811. [PMID: 25379961 PMCID: PMC4224418 DOI: 10.1371/journal.pone.0111811] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/07/2014] [Indexed: 12/28/2022] Open
Abstract
The conformational properties of the aminoacyl-tRNA binding site (A-site), and its surroundings in the Escherichia coli 30S ribosomal subunit, are of great relevance in designing antibacterial agents. The 30S subunit A-site is near ribosomal protein S12, which neighbors helices h27 and H69; this latter helix, of the 50S subunit, is a functionally important component of an intersubunit bridge. Experimental work has shown that specific point mutations in S12 (K42A, R53A) yield hyper-accurate ribosomes, which in turn confers resistance to the antibiotic 'paromomycin' (even when this aminoglycoside is bound to the A-site). Suspecting that these effects can be elucidated in terms of the local atomic interactions and detailed dynamics of this region of the bacterial ribosome, we have used molecular dynamics simulations to explore the motion of a fragment of the E. coli ribosome, including the A-site. We found that the ribosomal regions surrounding the A-site modify the conformational space of the flexible A-site adenines 1492/93. Specifically, we found that A-site mobility is affected by stacking interactions between adenines A1493 and A1913, and by contacts between A1492 and a flexible side-chain (K43) from the S12 protein. In addition, our simulations reveal possible indirect pathways by which the R53A and K42A mutations in S12 are coupled to the dynamical properties of the A-site. Our work extends what is known about the atomistic dynamics of the A-site, and suggests possible links between the biological effects of hyper-accurate mutations in the S12 protein and conformational properties of the ribosome; the implications for S12 dynamics help elucidate how the miscoding effects of paromomycin may be evaded in antibiotic-resistant mutants of the bacterial ribosome.
Collapse
Affiliation(s)
- Joanna Panecka
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Warsaw, Poland
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Cameron Mura
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States of America
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Dudek M, Romanowska J, Wituła T, Trylska J. Interactions of amikacin with the RNA model of the ribosomal A-site: computational, spectroscopic and calorimetric studies. Biochimie 2014; 102:188-202. [PMID: 24769038 DOI: 10.1016/j.biochi.2014.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
Amikacin is a 2-deoxystreptamine aminoglycoside antibiotic possessing a unique l-HABA (l-(-)-γ-amino-α-hydroxybutyric acid) group and applied in the treatment of hospital-acquired infections. Amikacin influences bacterial translation by binding to the decoding region of the small ribosomal subunit that overlaps with the binding site of aminoacylated-tRNA (A-site). Here, we have characterized thermodynamics of interactions of amikacin with a 27-mer RNA oligonucleotide mimicking the aminoglycoside binding site in the bacterial ribosome. We applied isothermal titration and differential scanning calorimetries, circular dichroism and thermal denaturation experiments, as well as computer simulations. Thermal denaturation studies have shown that amikacin affects only slightly the melting temperatures of the A-site mimicking RNA model suggesting a moderate stabilization of RNA by amikacin. Isothermal titration calorimetry gives the equilibrium dissociation constants for the binding reaction between amikacin and the A-site oligonucleotide in the micromolar range with a favorable enthalpic contribution. However, for amikacin we observe a positive entropic contribution to binding, contrary to other aminoglycosides, paromomycin and ribostamycin. Circular dichroism spectra suggest that the observed increase in entropy is not caused by structural changes of RNA because amikacin binding does not destabilize the helicity of the RNA model. To investigate the origins of this positive entropy change we performed all-atom molecular dynamics simulations in explicit solvent for the 27-mer RNA oligonucleotide mimicking one A-site and the crystal structure of an RNA duplex containing two A-sites. We observed that the diversity of the conformational states of the l-HABA group sampled in the simulations of the complex was larger than for the free amikacin in explicit water. Therefore, the larger flexibility of the l-HABA group in the bound form may contribute to an increase of entropy upon binding.
Collapse
Affiliation(s)
- Marta Dudek
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; First Faculty of Medicine, Department of Hematology, Oncology and Internal Diseases, Medical University of Warsaw, Al. Żwirki i Wigury 61, 02-091 Warsaw, Poland
| | - Julia Romanowska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland; Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Tomasz Wituła
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Al. Żwirki i Wigury 93, 02-089 Warsaw, Poland.
| |
Collapse
|
6
|
Saini JS, Homeyer N, Fulle S, Gohlke H. Determinants of the species selectivity of oxazolidinone antibiotics targeting the large ribosomal subunit. Biol Chem 2014; 394:1529-41. [PMID: 24006327 DOI: 10.1515/hsz-2013-0188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/01/2013] [Indexed: 01/18/2023]
Abstract
Oxazolidinone antibiotics bind to the highly conserved peptidyl transferase center in the ribosome. For developing selective antibiotics, a profound understanding of the selectivity determinants is required. We have performed for the first time technically challenging molecular dynamics simulations in combination with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) free energy calculations of the oxazolidinones linezolid and radezolid bound to the large ribosomal subunits of the eubacterium Deinococcus radiodurans and the archaeon Haloarcula marismortui. A remarkably good agreement of the computed relative binding free energy with selectivity data available from experiment for linezolid is found. On an atomic level, the analyses reveal an intricate interplay of structural, energetic, and dynamic determinants of the species selectivity of oxazolidinone antibiotics: A structural decomposition of free energy components identifies influences that originate from first and second shell nucleotides of the binding sites and lead to (opposing) contributions from interaction energies, solvation, and entropic factors. These findings add another layer of complexity to the current knowledge on structure-activity relationships of oxazolidinones binding to the ribosome and suggest that selectivity analyses solely based on structural information and qualitative arguments on interactions may not reach far enough. The computational analyses presented here should be of sufficient accuracy to fill this gap.
Collapse
|
7
|
Li DG, Liu B, Zhou DW. Structural characterization of enzymatic products in the dTDP-d-Qui4NFo biosynthetic pathway using electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:681-690. [PMID: 23418147 DOI: 10.1002/rcm.6501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 12/04/2012] [Accepted: 01/03/2013] [Indexed: 06/01/2023]
Abstract
RATIONALE Structural characterization of biosynthetic precursors is very important in assigning enzymatic function to proteins that have been identified as functional homologs on the basis of sequence homology alone. The objective of this study is to demonstrate the use of electrospray ionization tandem mass spectrometry (ESI-MS/MS) as a powerful technique for the characterization of enzymatic products in the biosynthetic pathway of deoxythymidine 5'-diphosphate-4-formamido-4,6-dideoxy-D-glucose (dTDP-D-Qui4NFo) in Providencia alcalifaciens O30. METHODS The glucose-1-phosphate thymidyltransferase (RmlA), dTDP-d-glucose 4,6-dehydratase (RmlB), dTDP-4-keto-6-deoxy-d-glucose aminotransferase (VioA), and formyltransferase (VioF) catalyzed reactions were directly monitored by ESI-MS, followed by a detailed structural characterization of the final enzymatic products using ESI-MS/MS in the negative-ion mode after minimal cleanup. RESULTS The biosynthetic pathway of dTDP-D-Qui4NFo, beginning from α-D-glucose-1-phosphate in four reaction steps catalyzed by RmlA, RmlB, VioA and VioF, was characterized solely by ESI-MS/MS. The results obtained were in good agreement with that of traditional high-performance liquid chromatography (HPLC) monitoring and preparation, as well as nuclear magnetic resonance (NMR) and ESI-MS structural characterization. CONCLUSIONS MS provides efficient and simple characterization of important unusual dTDP-sugar biosynthetic pathways in the O-chains of bacterial lipopolysaccharides.
Collapse
Affiliation(s)
- Dian-Ge Li
- TEDA School of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin Research Center for Functional Genomics and Biochip, Ministry of Education, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | | | | |
Collapse
|
8
|
Romanowska J, Reuter N, Trylska J. Comparing aminoglycoside binding sites in bacterial ribosomal RNA and aminoglycoside modifying enzymes. Proteins 2012; 81:63-80. [PMID: 22907688 DOI: 10.1002/prot.24163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 11/10/2022]
Abstract
Aminoglycoside antibiotics are used against severe bacterial infections. They bind to the bacterial ribosomal RNA and interfere with the translation process. However, bacteria produce aminoglycoside modifying enzymes (AME) to resist aminoglycoside actions. AMEs form a variable group and yet they specifically recognize and efficiently bind aminoglycosides, which are also diverse in terms of total net charge and the number of pseudo-sugar rings. Here, we present the results of 25 molecular dynamics simulations of three AME representatives and aminoglycoside ribosomal RNA binding site, unliganded and complexed with an aminoglycoside, kanamycin A. A comparison of the aminoglycoside binding sites in these different receptors revealed that the enzymes efficiently mimic the nucleic acid environment of the ribosomal RNA binding cleft. Although internal dynamics of AMEs and their interaction patterns with aminoglycosides differ, the energetical analysis showed that the most favorable sites are virtually the same in the enzymes and RNA. The most copied interactions were of electrostatic nature, but stacking was also replicated in one AME:kanamycin complex. In addition, we found that some water-mediated interactions were very stable in the simulations of the complexes. We show that our simulations reproduce well findings from NMR or X-ray structural studies, as well as results from directed mutagenesis. The outcomes of our analyses provide new insight into aminoglycoside resistance mechanism that is related to the enzymatic modification of these drugs.
Collapse
Affiliation(s)
- Julia Romanowska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland.
| | | | | |
Collapse
|
9
|
Romanowska J, McCammon JA, Trylska J. Understanding the origins of bacterial resistance to aminoglycosides through molecular dynamics mutational study of the ribosomal A-site. PLoS Comput Biol 2011; 7:e1002099. [PMID: 21814503 PMCID: PMC3140962 DOI: 10.1371/journal.pcbi.1002099] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 05/08/2011] [Indexed: 01/15/2023] Open
Abstract
Paromomycin is an aminoglycosidic antibiotic that targets the RNA of the bacterial small ribosomal subunit. It binds in the A-site, which is one of the three tRNA binding sites, and affects translational fidelity by stabilizing two adenines (A1492 and A1493) in the flipped-out state. Experiments have shown that various mutations in the A-site result in bacterial resistance to aminoglycosides. In this study, we performed multiple molecular dynamics simulations of the mutated A-site RNA fragment in explicit solvent to analyze changes in the physicochemical features of the A-site that were introduced by substitutions of specific bases. The simulations were conducted for free RNA and in complex with paromomycin. We found that the specific mutations affect the shape and dynamics of the binding cleft as well as significantly alter its electrostatic properties. The most pronounced changes were observed in the U1406C∶U1495A mutant, where important hydrogen bonds between the RNA and paromomycin were disrupted. The present study aims to clarify the underlying physicochemical mechanisms of bacterial resistance to aminoglycosides due to target mutations.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacteria/drug effects
- Bacteria/genetics
- Bacteria/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Binding Sites
- Drug Resistance, Bacterial/drug effects
- Drug Resistance, Bacterial/genetics
- Hydrogen Bonding
- Molecular Dynamics Simulation
- Mutation
- Paromomycin/pharmacology
- Protein Binding
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Ribosome Subunits, Small, Bacterial/genetics
- Ribosome Subunits, Small, Bacterial/metabolism
Collapse
Affiliation(s)
- Julia Romanowska
- Department of Biophysics, Faculty of Physics, University of Warsaw, Warsaw Poland.
| | | | | |
Collapse
|