1
|
Xie Z, Zhao Y, Yang W, Li W, Wu Y, Chen Z. Methotrexate, a small molecular scaffold targeting Kv1.3 channel extracellular pore region. Biochem Biophys Res Commun 2020; 532:265-270. [PMID: 32863001 DOI: 10.1016/j.bbrc.2020.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 11/18/2022]
Abstract
Methotrexate (MTX) has been widely used for the treatment of many types of autoimmune diseases, such as rheumatoid arthritis, psoriasis and dermatomyositis. However, its pharmacological mechanism is still unclear completely. In this study, we found that MTX is a potent and selective inhibitor of the Kv1.3 channel, a class of potassium channels highly associated with autoimmune diseases. Electrophysiological experiments showed that MTX inhibited human Kv1.3 channel with an IC50 of 41.5 ± 24.9 nM, and 1 μM MTX inhibited 32.6 ± 1.3% and 25.6 ± 2.2% of human Kv1.1 and Kv1.2 channel currents, respectively. These data implied the unique selectivity of MTX towards the Kv1.3 channel. Excitingly, using channel activation and chimeric experiments, we found that MTX bound to the outer pore region of Kv1.3 channel. Mutagenesis experiments in the Kv.3 channel extracellular pore region further showed that the Dsp371, Thr373 and His399 residues of outer pore region of Kv1.3 channel played important roles in MTX inhibiting activities. In conclusion, MTX inhibited Kv1.3 channel by targeting extracellular pore region, which is different form all the report small molecules, such as PAP-1 and 4-AP, but similar with many natural animal toxin peptides, such as ChTX, ShK and BmKTX. To the best of our knowledge, MTX is the first small molecular scaffold targeting the Kv1.3 channel extracellular pore region, suggesting its potential applications for designing novel Kv1.3 lead drugs and treating Kv1.3 channel-associated autoimmune diseases.
Collapse
Affiliation(s)
- Zili Xie
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yonghui Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weishan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China.
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Biodrug Research Center, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Paul B, Ibarra GSR, Hubbard N, Einhaus T, Astrakhan A, Rawlings DJ, Kiem HP, Peterson CW. Efficient Enrichment of Gene-Modified Primary T Cells via CCR5-Targeted Integration of Mutant Dihydrofolate Reductase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:347-357. [PMID: 30038938 PMCID: PMC6054698 DOI: 10.1016/j.omtm.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/01/2018] [Indexed: 12/19/2022]
Abstract
Targeted gene therapy strategies utilizing homology-driven repair (HDR) allow for greater control over transgene integration site, copy number, and expression-significant advantages over traditional vector-mediated gene therapy with random genome integration. However, the relatively low efficiency of HDR-based strategies limits their clinical application. Here, we used HDR to knock in a mutant dihydrofolate reductase (mDHFR) selection gene at the gene-edited CCR5 locus in primary human CD4+ T cells and selected for mDHFR-modified cells in the presence of methotrexate (MTX). Cells were transfected with CCR5-megaTAL nuclease mRNA and transduced with adeno-associated virus containing an mDHFR donor template flanked by CCR5 homology arms, leading to up to 40% targeted gene insertion. Clinically relevant concentrations of MTX led to a greater than 5-fold enrichment for mDHFR-modified cells, which maintained a diverse TCR repertoire over the course of expansion and drug selection. Our results demonstrate that mDHFR/MTX-based selection can be used to enrich for gene-modified T cells ex vivo, paving the way for analogous approaches to increase the percentage of HIV-resistant, autologous CD4+ T cells infused into HIV+ patients, and/or for in vivo selection of gene-edited T cells for the treatment of cancer.
Collapse
Affiliation(s)
- Biswajit Paul
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Guillermo S Romano Ibarra
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nicholas Hubbard
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, USA
| | - Teresa Einhaus
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Pediatrics, University of Washington, Seattle, WA, USA.,Department of Immunology, University of Washington, Seattle, WA, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Dozier JK, Distefano MD. Site-Specific PEGylation of Therapeutic Proteins. Int J Mol Sci 2015; 16:25831-64. [PMID: 26516849 PMCID: PMC4632829 DOI: 10.3390/ijms161025831] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022] Open
Abstract
The use of proteins as therapeutics has a long history and is becoming ever more common in modern medicine. While the number of protein-based drugs is growing every year, significant problems still remain with their use. Among these problems are rapid degradation and excretion from patients, thus requiring frequent dosing, which in turn increases the chances for an immunological response as well as increasing the cost of therapy. One of the main strategies to alleviate these problems is to link a polyethylene glycol (PEG) group to the protein of interest. This process, called PEGylation, has grown dramatically in recent years resulting in several approved drugs. Installing a single PEG chain at a defined site in a protein is challenging. Recently, there is has been considerable research into various methods for the site-specific PEGylation of proteins. This review seeks to summarize that work and provide background and context for how site-specific PEGylation is performed. After introducing the topic of site-specific PEGylation, recent developments using chemical methods are described. That is followed by a more extensive discussion of bioorthogonal reactions and enzymatic labeling.
Collapse
Affiliation(s)
- Jonathan K Dozier
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Zhao SS, Bukar N, Toulouse JL, Pelechacz D, Robitaille R, Pelletier JN, Masson JF. Miniature multi-channel SPR instrument for methotrexate monitoring in clinical samples. Biosens Bioelectron 2015; 64:664-70. [DOI: 10.1016/j.bios.2014.09.082] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/11/2014] [Accepted: 09/29/2014] [Indexed: 01/02/2023]
|
5
|
Jonnalagadda M, Brown CE, Chang WC, Ostberg JR, Forman SJ, Jensen MC. Engineering human T cells for resistance to methotrexate and mycophenolate mofetil as an in vivo cell selection strategy. PLoS One 2013; 8:e65519. [PMID: 23755242 PMCID: PMC3675038 DOI: 10.1371/journal.pone.0065519] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 04/26/2013] [Indexed: 11/18/2022] Open
Abstract
Gene transfer and drug selection systems that enforce ongoing transgene expression in vitro and in vivo which are compatible with human pharmaceutical drugs are currently underdeveloped. Here, we report on the utility of incorporating human enzyme muteins that confer resistance to the lymphotoxic/immunosuppressive drugs methotrexate (MTX) and mycophenolate mofetil (MMF) in a multicistronic lentiviral vector for in vivo T lymphocyte selection. We found that co-expression of human dihydrofolate reductase (DHFR(FS); L22F, F31S) and inosine monophosphate dehydrogenase II (IMPDH2(IY); T333I, S351Y) conferred T cell resistance to the cytocidal and anti-proliferative effects of these drugs at concentrations that can be achieved clinically (up to 0.1 µM MTX and 1.0 µM MPA). Furthermore, using a immunodeficient mouse model that supports the engraftment of central memory derived human T cells, in vivo selection studies demonstrate that huEGFRt(+)DHFR(FS+)IMPDH2(IY+) T cells could be enriched following adoptive transfer either by systemic administration of MTX alone (4.4 -fold), MMF alone (2.9-fold), or combined MTX and MMF (4.9-fold). These findings demonstrate the utility of both DHFR(FS)/MTX and IMPDH2(IY)/MMF for in vivo selection of lentivirally transduced human T cells. Vectors incorporating these muteins in combination with other therapeutic transgenes may facilitate the selective engraftment of therapeutically active cells in recipients.
Collapse
Affiliation(s)
- Mahesh Jonnalagadda
- Departments of Cancer Immunotherapeutics & Tumor Immunology, and Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Christine E. Brown
- Departments of Cancer Immunotherapeutics & Tumor Immunology, and Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Wen-Chung Chang
- Departments of Cancer Immunotherapeutics & Tumor Immunology, and Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Julie R. Ostberg
- Departments of Cancer Immunotherapeutics & Tumor Immunology, and Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Stephen J. Forman
- Departments of Cancer Immunotherapeutics & Tumor Immunology, and Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Michael C. Jensen
- Departments of Cancer Immunotherapeutics & Tumor Immunology, and Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Duarte, California, United States of America
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
6
|
Jonnalagadda M, Brown CE, Chang WC, Ostberg JR, Forman SJ, Jensen MC. Efficient selection of genetically modified human T cells using methotrexate-resistant human dihydrofolate reductase. Gene Ther 2013; 20:853-60. [PMID: 23303282 PMCID: PMC4028078 DOI: 10.1038/gt.2012.97] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/12/2012] [Accepted: 11/19/2012] [Indexed: 11/30/2022]
Abstract
Genetic modification of human T cells to express transgene-encoded polypeptides, such as tumor targeting chimeric antigen receptors, is an emerging therapeutic modality showing promise in clinical trials. The development of simple and efficient techniques for purifying transgene+ T cells is needed to facilitate the derivation of cell products with uniform potency and purity. Unlike selection platforms that utilize physical methods (immunomagnetic or sorting) that are technically cumbersome and limited by the expense and availability of clinical-grade components, we focused on designing a selection system based on the pharmaceutical drug methotrexate (MTX), a potent allosteric inhibitor of human dihydrofolate reductase (DHFR). Here, we describe the development of SIN lentiviral vectors that direct the coordinated expression of a CD19-specific CAR, the human EGFRt tracking/suicide construct, and a methotrexate-resistant human DHFR mutein (huDHFRFS; L22F, F31S). Our results demonstrate that huDHFRFS co-expression renders lentivirally transduced primary human CD45RO+CD62L+ central memory T cells resistant to lymphotoxic concentrations of MTX up to 0.1 µM. Our modular cDNA design insures that selected MTX-resistant T cells co-express functionally relevant levels of the CD19-specific CAR and EGFRt. This selection system based on huDHFRFS and MTX has considerable potential utility in the manufacturing of clinical-grade T cell products.
Collapse
Affiliation(s)
- M Jonnalagadda
- Departments of Cancer Immunotherapeutics and Tumor Immunology, and Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|