1
|
Cai MZ, Wen Z, Li HZ, Yang Y, Liang JX, Liao YS, Wang JY, Wang LY, Zhang NY, Kamei KI, An HW, Wang H. Peptide-based fluorescent probes for the diagnosis of tumor and image-guided surgery. Biosens Bioelectron 2025; 276:117255. [PMID: 39965418 DOI: 10.1016/j.bios.2025.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/12/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Fluorescent contrast agents are instrumental in amplifying signals, thereby enhancing the sensitivity and accuracy of live optical imaging. However, a significant proportion of traditional fluorescent contrast agents exhibit drawbacks such as short half-life, suboptimal biocompatibility, and inadequate tumor targeting, all of which impede effective imaging guidance. Peptides, derived from natural structures, offer a flexible modular design that can be precisely engineered and adjusted using synthetic methods to achieve specific biological activity and pharmacokinetic properties. They bind with designated receptors to exert their effects, demonstrating high specificity. The development of fluorescent probes based on peptides significantly overcomes the limitations of conventional contrast agents, offering superior performance. This article provides a comprehensive review of three strategies for constructing peptide-based fluorescent probes, delving into their distinct design concepts, mechanisms of action, and innovative aspects. It also highlights the potential applications of peptide-based fluorescent probes in tumor diagnosis and image-guided surgery, offering insights into their future clinical transformation.
Collapse
Affiliation(s)
- Ming-Ze Cai
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Zhuan Wen
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Hao-Ze Li
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Yang Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Jian-Xiao Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Si Liao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Jing-Yao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Li-Ying Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China
| | - Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Programs of Biology and Bioengineering, Divisions of Science and Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
2
|
Watson GM, Gunzburg MJ, Wilce JA. Using Surface Plasmon Resonance to Study SH2 Domain-Peptide Interactions. Methods Mol Biol 2023; 2705:199-210. [PMID: 37668975 DOI: 10.1007/978-1-0716-3393-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Biosensor measurement using surface plasmon resonance enables precise evaluation of peptide-protein interactions. It is a sensitive technique that provides kinetic and affinity data with very little sample and without the need for analyte labels. Here, we describe its application for the analysis of peptide interactions with the Grb7-SH2 domain prepared with a GST-tag for tethering to the chip surface. This has been successfully and reliably used for direct comparison of a range of peptides under different solution conditions as well as direct comparison of peptides flowed over different related SH2 domains in real time. We have used the BIAcore system and describe both the methodology for data collection and analysis, with principles also applicable to other biosensor platforms.
Collapse
Affiliation(s)
- Gabrielle M Watson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Menachem J Gunzburg
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jacqueline A Wilce
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
3
|
Bose D, Roy L, Chatterjee S. Peptide therapeutics in the management of metastatic cancers. RSC Adv 2022; 12:21353-21373. [PMID: 35975072 PMCID: PMC9345020 DOI: 10.1039/d2ra02062a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer remains a leading health concern threatening lives of millions of patients worldwide. Peptide-based drugs provide a valuable alternative to chemotherapeutics as they are highly specific, cheap, less toxic and easier to synthesize compared to other drugs. In this review, we have discussed various modes in which peptides are being used to curb cancer. Our review highlights specially the various anti-metastatic peptide-based agents developed by targeting a plethora of cellular factors. Herein we have given a special focus on integrins as targets for peptide drugs, as these molecules play key roles in metastatic progression. The review also discusses use of peptides as anti-cancer vaccines and their efficiency as drug-delivery tools. We hope this work will give the reader a clear idea of the mechanisms of peptide-based anti-cancer therapeutics and encourage the development of superior drugs in the future.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| | - Laboni Roy
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| | - Subhrangsu Chatterjee
- Department of Biophysics Bose Institute Unified Academic Campus EN 80, Sector V, Bidhan Nagar Kolkata 700091 WB India
| |
Collapse
|
4
|
Sturre NP, Colson RN, Shah N, Watson GM, Yang X, Wilce MCJ, Price JT, Wilce JA. Enhancing the Bioactivity of Bicyclic Peptides Targeted to Grb7-SH2 by Restoring Cell Permeability. Biomedicines 2022; 10:1145. [PMID: 35625882 PMCID: PMC9138261 DOI: 10.3390/biomedicines10051145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022] Open
Abstract
The development of peptide inhibitors against intracellular targets depends upon the dual challenge of achieving a high affinity and specificity for the target and maintaining cellular permeability for biological activity. Previous efforts to develop bicyclic peptides targeted to the Grb7 signalling protein implicated in HER2+ve cancer progression have resulted in improved affinity. However, these same peptides demonstrated a lowered activity due to their decreased ability to penetrate cell membranes. Here, we report the testing of a new series of bicyclic G7 peptides designed to possess improved bioactivity. We discovered that the incorporation of two amino acids (Phe-Pro, Phe-Trp or Phe-Arg) within the bicyclic peptide framework maintains an enhanced binding affinity for the Grb7-SH2 domain compared to that of the first-generation monocyclic peptide G7-18NATE. Structure determination using X-ray crystallography revealed that the mode of binding by the expanded bicyclic G7 peptide is analogous to that of G7-18NATE. Interestingly, while the bicyclic peptide containing Phe-Trp did not display the highest affinity for Grb7-SH2 in the series, it was the most potent inhibitor of HER2+ve SKBR3 breast cancer cell migration when coupled to Penetratin. Together, this demonstrates that peptide flexibility as well as the amino acid tryptophan can play important roles in the uptake of peptides into the cell.
Collapse
Affiliation(s)
- Natasha P. Sturre
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (N.P.S.); (R.N.C.); (N.S.); (G.M.W.); (X.Y.); (M.C.J.W.); (J.T.P.)
| | - Rhys N. Colson
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (N.P.S.); (R.N.C.); (N.S.); (G.M.W.); (X.Y.); (M.C.J.W.); (J.T.P.)
| | - Neelam Shah
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (N.P.S.); (R.N.C.); (N.S.); (G.M.W.); (X.Y.); (M.C.J.W.); (J.T.P.)
| | - Gabrielle M. Watson
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (N.P.S.); (R.N.C.); (N.S.); (G.M.W.); (X.Y.); (M.C.J.W.); (J.T.P.)
| | - Xue Yang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (N.P.S.); (R.N.C.); (N.S.); (G.M.W.); (X.Y.); (M.C.J.W.); (J.T.P.)
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (N.P.S.); (R.N.C.); (N.S.); (G.M.W.); (X.Y.); (M.C.J.W.); (J.T.P.)
| | - John T. Price
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (N.P.S.); (R.N.C.); (N.S.); (G.M.W.); (X.Y.); (M.C.J.W.); (J.T.P.)
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia
| | - Jacqueline A. Wilce
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia; (N.P.S.); (R.N.C.); (N.S.); (G.M.W.); (X.Y.); (M.C.J.W.); (J.T.P.)
| |
Collapse
|
5
|
Sang J, Kulkarni K, Watson GM, Ma X, Craik DJ, Henriques ST, Poth AG, Benfield AH, Wilce JA. Evaluation of Cyclic Peptide Inhibitors of the Grb7 Breast Cancer Target: Small Change in Cargo Results in Large Change in Cellular Activity. Molecules 2019; 24:molecules24203739. [PMID: 31627265 PMCID: PMC6832895 DOI: 10.3390/molecules24203739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022] Open
Abstract
Grb7 is an adapter protein, overexpressed in HER2+ve breast and other cancers, and identified as a therapeutic target. Grb7 promotes both proliferative and migratory cellular pathways through interaction of its SH2 domain with upstream binding partners including HER2, SHC, and FAK. Here we present the evaluation of a series of monocyclic and bicyclic peptide inhibitors that have been developed to specifically and potently target the Grb7 SH2-domain. All peptides tested were found to inhibit signaling in both ERK and AKT pathways in SKBR-3 and MDA-MB-231 cell lines. Proliferation, migration, and invasion assays revealed, however, that the second-generation bicyclic peptides were not more bioactive than the first generation G7-18NATE peptide, despite their higher in vitro affinity for the target. This was found not to be due to steric hindrance by the cell-permeability tag, as ascertained by ITC, but to differences in the ability of the bicyclic peptides to interact with and penetrate cellular membranes, as determined using SPR and mass spectrometry. These studies reveal that just small differences to amino acid composition can greatly impact the effectiveness of peptide inhibitors to their intracellular target and demonstrate that G7-18NATE remains the most effective peptide inhibitor of Grb7 developed to date.
Collapse
Affiliation(s)
- Jianrong Sang
- Department of Physiology, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - Ketav Kulkarni
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - Gabrielle M Watson
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - Xiuquan Ma
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Sónia T Henriques
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane 4102, Australia.
| | - Aaron G Poth
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
| | - Aurélie H Benfield
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4072, Australia.
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane 4102, Australia.
| | - Jacqueline A Wilce
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton 3800, Australia.
| |
Collapse
|
6
|
Watson GM, Kulkarni K, Sang J, Ma X, Gunzburg MJ, Perlmutter P, Wilce MC, Wilce JA. Discovery, Development, and Cellular Delivery of Potent and Selective Bicyclic Peptide Inhibitors of Grb7 Cancer Target. J Med Chem 2017; 60:9349-9359. [DOI: 10.1021/acs.jmedchem.7b01320] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Gabrielle M. Watson
- Biomedicine Discovery
Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Ketav Kulkarni
- Biomedicine Discovery
Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jianrong Sang
- Biomedicine Discovery
Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
- Department of Physiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiuquan Ma
- Biomedicine Discovery
Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Menachem J. Gunzburg
- Biomedicine Discovery
Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Patrick Perlmutter
- School of Chemistry, Monash University, Wellington
Road, Clayton, VIC 3800, Australia
| | - Matthew C.J. Wilce
- Biomedicine Discovery
Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Jacqueline A. Wilce
- Biomedicine Discovery
Institute, Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Watson GM, Lucas WAH, Gunzburg MJ, Wilce JA. Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target. Front Mol Biosci 2017; 4:64. [PMID: 29018805 PMCID: PMC5623053 DOI: 10.3389/fmolb.2017.00064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/13/2017] [Indexed: 12/28/2022] Open
Abstract
Growth factor receptor bound protein 7 (Grb7) is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine), however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the βD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors.
Collapse
Affiliation(s)
| | | | | | - Jacqueline A. Wilce
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
Unexpected involvement of staple leads to redesign of selective bicyclic peptide inhibitor of Grb7. Sci Rep 2016; 6:27060. [PMID: 27257138 PMCID: PMC4891710 DOI: 10.1038/srep27060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/12/2016] [Indexed: 01/11/2023] Open
Abstract
The design of potent and specific peptide inhibitors to therapeutic targets is of enormous utility for both proof-of-concept studies and for the development of potential new therapeutics. Grb7 is a key signaling molecule in the progression of HER2 positive and triple negative breast cancers. Here we report the crystal structure of a stapled bicyclic peptide inhibitor G7-B1 in complex with the Grb7-SH2 domain. This revealed an unexpected binding mode of the peptide, in which the staple forms an alternative contact with the surface of the target protein. Based on this structural information, we designed a new series of bicyclic G7 peptides that progressively constrain the starting peptide, to arrive at the G7-B4 peptide that binds with an approximately 2-fold enhanced affinity to the Grb7-SH2 domain (KD = 0.83 μM) compared to G7-B1 and shows low affinity binding to Grb2-, Grb10- and Grb14-SH2 domains (KD > 100 μM). Furthermore, we determined the structure of the G7-B4 bicyclic peptide in complex with the Grb7-SH2 domain, both before and after ring closing metathesis to show that the closed staple is essential to the target interaction. The G7-B4 peptide represents an advance in the development of Grb7 inhibitors and is a classical example of structure aided inhibitor development.
Collapse
|
9
|
Gunzburg MJ, Ambaye ND, Del Borgo MP, Perlmutter P, Wilce JA. Design and testing of bicyclic inhibitors of Grb7--are two cycles better than one? Biopolymers 2016; 100:543-9. [PMID: 23505041 DOI: 10.1002/bip.22237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/07/2013] [Accepted: 03/11/2013] [Indexed: 11/08/2022]
Abstract
Grb7 is an adapter protein involved in the propagation of signals in cancer cell migration and proliferation, and is thus a target for the development of novel anti-cancer agents. An 11-residue thioether-cyclized peptide known as G7-18NATE has previously been developed, that inhibits Grb7 via specific interactions with its SH2 domain with micromolar affinity. Here we explore whether the peptide binding is enhanced by the addition of a second linkage designed to restrain the peptide in its bound conformation and thus reduce the entropic loss upon binding. The use of an O-ally ser covalent linkage between residue positions 1 and 8 successfully enhanced the affinity, and ITC showed that the entropic loss was reduced. A peptide with thioether-cyclization exchanged for an amide linkage showed reduce affinity, though the formation of a disulfide bond between positions 1 and 8 in this peptide enhanced its binding. This study paves the way for improving the G7-18NATE scaffold for second generation inhibitors of Grb7.
Collapse
Affiliation(s)
- Menachem J Gunzburg
- Department of Biochemistry and Molecular Biology, Monash University, VIC, 3800, Australia
| | | | | | | | | |
Collapse
|
10
|
Watson GM, Gunzburg MJ, Ambaye ND, Lucas WAH, Traore DA, Kulkarni K, Cergol KM, Payne RJ, Panjikar S, Pero SC, Perlmutter P, Wilce MCJ, Wilce JA. Cyclic Peptides Incorporating Phosphotyrosine Mimetics as Potent and Specific Inhibitors of the Grb7 Breast Cancer Target. J Med Chem 2015; 58:7707-18. [DOI: 10.1021/acs.jmedchem.5b00609] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | | | | | | | | | | | - Katie M. Cergol
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J. Payne
- School
of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Santosh Panjikar
- Australian Synchrotron, 800 Blackburn
Road, Clayton, Victoria 3168, Australia
| | - Stephanie C. Pero
- Department
of Surgery and Vermont Cancer Center, University of Vermont, Burlington, Vermont 05401, United States
| | | | | | | |
Collapse
|
11
|
Ambaye ND, Gunzburg MJ, Traore DAK, Del Borgo MP, Perlmutter P, Wilce MCJ, Wilce JA. Preparation of crystals for characterizing the Grb7 SH2 domain before and after complex formation with a bicyclic peptide antagonist. Acta Crystallogr F Struct Biol Commun 2014; 70:182-6. [PMID: 24637751 PMCID: PMC3936443 DOI: 10.1107/s2053230x13033414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/10/2013] [Indexed: 11/10/2022] Open
Abstract
Human growth factor receptor-bound protein 7 (Grb7) is an adapter protein involved in cell growth, migration and proliferation. It is now recognized that Grb7 is an emerging therapeutic target in specific cancer subtypes. Recently, the discovery of a bicyclic peptide inhibitor that targets the Grb7 SH2 domain, named G7-B1, was reported. In an attempt to probe the foundation of its interaction with Grb7, the crystallization and preliminary data collection of both the apo and G7-B1-bound forms of the Grb7 SH2 domain are reported here. Diffraction-quality crystals were obtained using the hanging-drop vapour-diffusion method. After several rounds of microseeding, crystals of the apo Grb7 SH2 domain were obtained that diffracted to 1.8 Å resolution, while those of the G7-B1-Grb7 SH2 domain complex diffracted to 2.2 Å resolution. The apo Grb7 SH2 domain crystallized in the trigonal space group P63, whereas the G7-B1-Grb7 SH2 domain complex crystallized in the monoclinic space group P21. The experimental aspects of crystallization, crystal optimization and data collection and the preliminary data are reported.
Collapse
Affiliation(s)
- Nigus D. Ambaye
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Menachem J. Gunzburg
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Daouda A. K. Traore
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | | | | | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| | - Jacqueline A. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, VIC 3800, Australia
| |
Collapse
|
12
|
Salimraftar N, Noee S, Abdouss M, Riazi G, Khoshhesab ZM. Three-level response surface full-factorial design: advanced chemometric approach for optimizing diclofenac sodium-imprinted polymer. Polym Bull (Berl) 2013. [DOI: 10.1007/s00289-013-1042-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Kraskouskaya D, Duodu E, Arpin CC, Gunning PT. Progress towards the development of SH2 domain inhibitors. Chem Soc Rev 2013; 42:3337-70. [DOI: 10.1039/c3cs35449k] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Chan DW, Hui WWY, Cai PCH, Liu MX, Yung MMH, Mak CSL, Leung THY, Chan KKL, Ngan HYS. Targeting GRB7/ERK/FOXM1 signaling pathway impairs aggressiveness of ovarian cancer cells. PLoS One 2012; 7:e52578. [PMID: 23285101 PMCID: PMC3527599 DOI: 10.1371/journal.pone.0052578] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/20/2012] [Indexed: 01/14/2023] Open
Abstract
Ovarian cancer is a highly lethal disease with poor prognosis and especially in high-grade tumor. Emerging evidence has reported that aberrant upregulation and activation of GRB7, ERK as well as FOXM1 are closely associated with aggresivenesss of human cancers. However, the interplay between these factors in the pathogenesis of human cancers still remains unclear. In this study, we found that GRB7 (P<0.0001), ERK phosphorylation (P<0.0001) and FOXM1 (P = 0.001) were frequently increased and associated with high-grade tumors, as well as a high tendency in association with advanced stage ovarian cancer by immunohistochemical analysis. Intriguingly, the expressions of GRB7 (P<0.0001), ERK phosphorylation (P<0.001) and FOXM1 (P<0.001) showed a significant stepwise increase pattern along Grade 1 to Grade 3 ovarian cancers. Biochemical studies using western blot analysis demonstrated that enforced expression or knockdown of GRB7 showed GRB7 could elevate the levels of ERK phosphorylation and FOXM1, whereas enforced expression of FOXM1 could not alter levels of GRB7 and ERK phosphorylation. But inhibition of ERK signaling by U0126 or PD98059 could reduce the level of FOXM1 in GRB7-overexpressing ovarian cancer cells, suggesting that GRB7, ERK and FOXM1 are regulated orderly. Moreover, inhibition of ERK activity by U0126 or PD98059, or decreased FOXM1 expression by Thiostrepton significantly inhibited cell migration/invasion, tumor growth in vitro and in vivo. Collectively, our findings confer that targeting GRB7/ERK/FOXM1 signaling cascade may be a promising molecular therapeutic choice in combating ovarian cancer.
Collapse
Affiliation(s)
- David W. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
- * E-mail: (DC); (HN)
| | - Winnie W. Y. Hui
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Patty C. H. Cai
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Michelle X. Liu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Mingo M. H. Yung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Celia S. L. Mak
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Thomas H. Y. Leung
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Karen K. L. Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
| | - Hextan Y. S. Ngan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R.China
- * E-mail: (DC); (HN)
| |
Collapse
|