1
|
Ji X, Li L, Zhang K, Yuan X, Zhang X, Wang L, Zhao Q. Discovering the Bioactive Compounds Binding to α 1A-Adrenergic Receptor in Guizhi Fuling Formula and Revealing Their Interactions by Immobilizing the Receptor Through Colicin L7 DNase/Immunity Protein 7 Ultra-Affinity System. J Sep Sci 2024; 47:e70053. [PMID: 39658822 DOI: 10.1002/jssc.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
In this work, Guizhi Fuling Formula (GFF), as well as α1A-adrenergic receptor (α1A-AR) were taken as the research objects. By utilizing the ultra-affinity between Colicin L7 DNase (CL7) and its homologous immune protein 7 (Im7), CL7-tagged α1A-AR was oriented immobilized to the Im7-coated silica gel surface. With the α1A-AR immobilized column in hand, the active compounds in GFF targeted to α1A-AR were screened, and the binding procedures were analyzed. The composite characterization demonstrated that the α1A-AR can be immobilized to the chromatographic stationary phase with good specificity and stability in 3 weeks. Paeoniflorin, cinnamic acid, and paeonol were identified as the active compounds in GFF targeted to α1A-AR. Among them, cinnamic acid and paeonol have the same binding site on α1A-AR as the specific drug tamsulosin. The binding parameters obtained by frontal analysis and injection amount-dependent analysis were consistent in the same concentration range. Collectively, these results indicated that the α1A-AR chromatographic column synthesized by a novel immobilized method was capable of screening and analyzing the functional compounds from the complex matrix, which provided an alternative for rapid screening and analysis to traditional ethnic drugs.
Collapse
Affiliation(s)
- Xu Ji
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, P. R. China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica, Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang, P. R. China
| | - Liangxi Li
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, P. R. China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica, Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang, P. R. China
| | - Kaiyue Zhang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, P. R. China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica, Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang, P. R. China
| | - Xinyi Yuan
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, P. R. China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica, Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang, P. R. China
| | - Xiaoying Zhang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, P. R. China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica, Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang, P. R. China
| | - Lu Wang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, P. R. China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica, Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang, P. R. China
| | - Qin Zhao
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, P. R. China
- Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica, Tibetan Medical Research Center of Tibet, Xizang Minzu University, Xianyang, P. R. China
| |
Collapse
|
2
|
Fu J, Qin W, Cao LQ, Chen ZS, Cao HL. Advances in receptor chromatography for drug discovery and drug-receptor interaction studies. Drug Discov Today 2023; 28:103576. [PMID: 37003514 DOI: 10.1016/j.drudis.2023.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Receptor chromatography involves high-throughput separation and accurate drug screening based on specific drug-receptor recognition and affinity, which has been widely used to screen active compounds in complex samples. This review summarizes the immobilization methods for receptors from three aspects: random covalent immobilization methods, site-specific covalent immobilization methods and dual-target receptor chromatography. Meanwhile, it focuses on its applications from three angles: screening active compounds in natural products, in natural-product-derived DNA-encoded compound libraries and drug-receptor interactions. This review provides new insights for the design and application of receptor chromatography, high-throughput and accurate drug screening, drug-receptor interactions and more. Teaser: This review summarizes the immobilization methods of receptors and the application of receptor chromatography, which will provide new insights for the design and application of receptor chromatography, rapid drug screening, drug-receptor interactions and more.
Collapse
Affiliation(s)
- Jia Fu
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Lu-Qi Cao
- College of Pharmacy and Health Sciences, St John's University, NY, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, NY, USA.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
3
|
Shayiranbieke A, Liang Q, Wang T, Ma J, Li G, Du X, Zhang G, Wang C, Zhao X. Development of immobilized beta1-adrenoceptor chromatography for rapid discovery of ligands specifically binding to the receptor from herbal extract. J Chromatogr A 2022; 1677:463298. [DOI: 10.1016/j.chroma.2022.463298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022]
|
4
|
Wang J, Zhao X, Yuan X, Hao J, Chang Z, Li Q, Zhao X. Rapid screening of bioactive compound in Sanzi Yangqin Decoction and investigating of binding mechanism by immobilized β 2-adrenogic receptor chromatography coupled with molecular docking. J Pharm Biomed Anal 2021; 197:113957. [PMID: 33601158 DOI: 10.1016/j.jpba.2021.113957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/09/2021] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
Screening bioactive compounds from traditional Chinese medicines plays pivotal role in preventing and curing diseases. Sanzi Yangqin Decoction (SYD) is a commonly used prescription for the treatment of cough, asthma and some other respiratory diseases for hundreds of years in practice. This reminds us that there may exist some bioactive compounds strongly binding with the recognized receptors mediating these diseases like β2-adrenegic receptor (β2-AR). Therefore, this work intends to screen bioactive compounds from SYD and revealed the binding mechanism by immobilized β2-AR chromatography and molecular docking. Taking advantages of a 3-high based enzymatic trans-methylation reaction (high speed, high specificity and high activity), the immobilization of β2-AR was successfully achieved. Representative chromatographic peaks of SYD on the immobilized β2-AR column was collected and recognized as rosmarinic acid and sinapine thiocyanate. Tension changes of the trachea ring showed that the two compounds were in a concentration-dependent manner when exerting their effects and the concentration ranges were 10-9-10-4 mol/L and 10-12-10-7 mol/L, respectively. Molecular docking revealed Ser203, Ser204, Ser207, Tyr316 and Asn312 were the main residues for the two compounds to bind with β2-AR. We concluded that the proposed method is becoming an alternative in rapid recognizing bioactive compounds from complex matrix.
Collapse
Affiliation(s)
- Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xue Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jiaxue Hao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhongman Chang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
Feng G, Yuan X, Li P, Tian R, Hou Z, Fu X, Chang Z, Wang J, Li Q, Zhao X. G protein-coupled receptor-in-paper, a versatile chromatographic platform to study receptor-drug interaction. J Chromatogr A 2020; 1637:461835. [PMID: 33383241 DOI: 10.1016/j.chroma.2020.461835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022]
Abstract
High-performance affinity chromatography is limited by its high cost and high pressure. Paper is made up of porous fiber networks and has the properties of low cost, ease of fabrication, and biodegradable. Due to these advantages, herein, we immobilized beta2-adrenoceptor (β2-AR) onto the surface of the polytetrafluoroethylene membrane, a paper-based material, and constructed a G protein-coupled receptor (GPCR)-in-paper chromatographic platform. This platform was characterized by Fourier transform infrared spectroscopy, fluorescence analysis, X-ray photoelectron spectroscopy, and chromatographic studies. These morphological and elemental analysis showed that β2-AR was successfully immobilized on the paper surface. The specific drugs have good retentions on the GPCR-in-paper chromatographic platform. The association constants of salbutamol, terbutaline and bambuterol to β2-AR were calculated to be 2.02 × 104 M-1, 1.15 × 104 M-1, 1.75 × 104 M-1 by adsorption energy distribution, which were in good line with the values from frontal analysis, zonal elution and previous literatures. We demonstrated that the GPCR-in-paper platform was cost-effective, easy to be modified for protein immobilization, and applicable in the receptor-drug interaction analysis. We believe such a platform sheds new light on paper chromatography for receptor-drug interaction analysis and other applications.
Collapse
Affiliation(s)
- Gangjun Feng
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ping Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Rui Tian
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhaoling Hou
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaoying Fu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhongman Chang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
6
|
Lecas L, Dugas V, Demesmay C. Affinity Chromatography: A Powerful Tool in Drug Discovery for Investigating Ligand/membrane Protein Interactions. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1749852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucile Lecas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Vincent Dugas
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| | - Claire Demesmay
- Institut Des Sciences Analytiques, Université De Lyon, Institut des Sciences Analytiques (UMR 5280-CNRS, UCBLyon 1), 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
7
|
Li Q, Ning X, An Y, Stanley BJ, Liang Y, Wang J, Zeng K, Fei F, Liu T, Sun H, Liu J, Zhao X, Zheng X. Reliable Analysis of the Interaction between Specific Ligands and Immobilized Beta-2-Adrenoceptor by Adsorption Energy Distribution. Anal Chem 2018; 90:7903-7911. [DOI: 10.1021/acs.analchem.8b00214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Xiaohui Ning
- Institute of Analytical Science, Northwest University, Xi’an, Shaanxi 710069, China
| | - Yuxin An
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Brett J. Stanley
- Department of Chemistry & Biochemistry, California State University, San Bernardino, California 92407-2397, United States
| | - Yuan Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Kaizhu Zeng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Fuhuan Fei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Ting Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Huanmei Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Jiajun Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi 710069, China
| |
Collapse
|
8
|
Li Z, Gao H, Li J, Zhang Y. Identification of bioactive compounds in Shaoyao-Gancao decoction using β2-adrenoceptor affinity chromatography. J Sep Sci 2017; 40:2558-2564. [PMID: 28432819 DOI: 10.1002/jssc.201700113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/04/2017] [Accepted: 04/13/2017] [Indexed: 12/12/2022]
Abstract
Shaoyao-Gancao decoction, a Chinese herbal formula, is composed of Paeoniae Radix alba and Glycyrrhiza Radix et rhizoma. It has been widely used to treat muscle spasms and asthma. However, little is known about the bioactive components of Shaoyao-Gancao decoction. In the present study, the bioactive compounds in water-extract of Shaoyao-Gancao decoction were separated by the immobilized β2 -adrenoceptor affinity column and identified using quadrupole time-of-flight mass spectrometry. The affinity constants of the separated compounds that bind to β2 -adrenoceptor were determined by frontal analysis. Compound bioactivity was tested in a rat tracheal smooth muscle relaxation assay. We identified the bioactive compounds in the water extract of Shaoyao-Gancao decoction that bound to the β2 -adrenoceptor as paeoniflorin and liquiritin. Paeoniflorin and liquiritin had only one binding site on the immobilized β2 -adrenoceptor, and the affinity constants were (2.16 ± 0.10) × 104 M-1 and (2.95 ± 0.15) × 104 M-1 , respectively. Both compounds induced a concentration-dependent relaxation of tracheal smooth muscle following K+ -stimulated contraction, and the relaxation effects were abrogated by the β2 -adrenoceptor antagonist, ICI 118551. Therefore, paeoniflorin and liquiritin are bioactive compounds in Shaoyao-Gancao decoction and the β2 -adrenoceptor affinity chromatography is a useful tool for identifying potential β2 -adrenoceptor ligands in natural products used in traditional Chinese medicine.
Collapse
Affiliation(s)
- Zehua Li
- College of Life Science, Northwest University, Xi'an, China
| | - Haiyang Gao
- College of Life Science, Northwest University, Xi'an, China
| | - Jiangying Li
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Yajun Zhang
- College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Liu G, Wang P, Li C, Wang J, Sun Z, Zhao X, Zheng X. Confirming therapeutic target of protopine using immobilized β 2 -adrenoceptor coupled with site-directed molecular docking and the target-drug interaction by frontal analysis and injection amount-dependent method. J Mol Recognit 2017; 30. [PMID: 28124461 DOI: 10.1002/jmr.2613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 12/17/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022]
Abstract
Drug-protein interaction analysis is pregnant in designing new leads during drug discovery. We prepared the stationary phase containing immobilized β2 -adrenoceptor (β2 -AR) by linkage of the receptor on macroporous silica gel surface through N,N'-carbonyldiimidazole method. The stationary phase was applied in identifying antiasthmatic target of protopine guided by the prediction of site-directed molecular docking. Subsequent application of immobilized β2 -AR in exploring the binding of protopine to the receptor was realized by frontal analysis and injection amount-dependent method. The association constants of protopine to β2 -AR by the 2 methods were (1.00 ± 0.06) × 105 M-1 and (1.52 ± 0.14) × 104 M-1 . The numbers of binding sites were (1.23 ± 0.07) × 10-7 M and (9.09 ± 0.06) × 10-7 M, respectively. These results indicated that β2 -AR is the specific target for therapeutic action of protopine in vivo. The target-drug binding occurred on Ser169 in crystal structure of the receptor. Compared with frontal analysis, injection amount-dependent method is advantageous to drug saving, improvement of sampling efficiency, and performing speed. It has grave potential in high-throughput drug-receptor interaction analysis.
Collapse
Affiliation(s)
- Guangxin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Pei Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Chan Li
- Drug Certificate Center, Shaanxi Food and Drug Administration, Xi'an, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhenyu Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
10
|
Zeng K, Wang J, Sun Z, Li Q, Liao S, Zhao X, Zheng X. Rapid analysis of interaction between six drugs and β 2 -adrenergic receptor by injection amount-dependent method. Biomed Chromatogr 2016; 31. [PMID: 27859454 DOI: 10.1002/bmc.3897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022]
Abstract
Drug-protein interaction analysis has become a considerable topic in life science which includes clarifying protein functions, explaining drug action mechanisms and uncovering novel drug candidates. This work was to determine the association constants (KA ) of six drugs to β2 -adrenergic receptor by injection amount-dependent method using stationary phase containing the immobilized receptor. The values of KA were calculated to be (25.85 ± 0.035) × 104 m-1 for clorprenaline, (42.51 ± 0.054) × 104 m-1 for clenbuterol, (6.67 ± 0.008) × 104 m-1 for terbutaline, (33.99 ± 0.025) × 104 m-1 for tulobuterol, (7.59 ± 0.011) × 104 m-1 for salbutamol and (78.52 ± 0.087) × 104 m-1 for bambuterol. This rank order agreed well with the data determined by zonal elution, frontal analysis and nonlinear chromatography, even using different batches of β2 -AR column. A good correlation was found between the association constants by the current method and radio-ligand binding assay. Our data indicates that the injection amount-dependent method is a powerful alternative for rapid analysis of ligand-receptor interactions.
Collapse
Affiliation(s)
- Kaizhu Zeng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Jing Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Zhenyu Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Sha Liao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
11
|
Comparison of zonal elution and nonlinear chromatography in determination of the interaction between seven drugs and immobilised β2-adrenoceptor. J Chromatogr A 2015; 1401:75-83. [DOI: 10.1016/j.chroma.2015.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
|
12
|
Gao X, Li Y, Qin Y, Chen E, Li Q, Zhao X, Bian L, Zheng J, Li Z, Zhang Y, Zheng X. Reversible and oriented immobilization of histidine-tagged protein on silica gel characterized by frontal analysis. RSC Adv 2015. [DOI: 10.1039/c5ra01012h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Utilizing N,N′-bis(carboxymethyl)-L-lysine (ANTA) combined with bivalent metal cation Ni2+, which leaving free sites for the reversible binding of gene recombinant histidine-tagged β2-adrenoceptor onto silica gel.
Collapse
|
13
|
Hu Y, Qian J, Guo H, Jiang S, Zhang Z. Application of Frontal Affinity Chromatography to Study the Biomolecular Interactions with Trypsin. J Chromatogr Sci 2014; 53:898-902. [DOI: 10.1093/chromsci/bmu141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Indexed: 01/08/2023]
|
14
|
An Y, Li Q, Chen J, Gao X, Chen H, Xiao C, Bian L, Zheng J, Zhao X, Zheng X. Binding of caffeic acid to human serum albumin by the retention data and frontal analysis. Biomed Chromatogr 2014; 28:1881-6. [DOI: 10.1002/bmc.3238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/26/2014] [Accepted: 04/09/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Yuxin An
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Jiejun Chen
- China National Center for Biotechnology Development; Beijing 100036 China
| | - Xiaokang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Hongwei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Jianbin Zheng
- Institute of Analytical Science; Northwest University; Xi'an 710069 China
| | - Xinfeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences; Northwest University; Xi'an 710069 China
| |
Collapse
|
15
|
Exploring drug–protein interactions using the relationship between injection volume and capacity factor. J Chromatogr A 2014; 1339:137-44. [DOI: 10.1016/j.chroma.2014.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/15/2022]
|
16
|
Zhao X, Li Q, Xiao C, Zhang Y, Bian L, Zheng J, Zheng X, Li Z, Zhang Y, Fan T. Oriented immobilisation of histidine-tagged protein and its application in exploring interactions between ligands and proteins. Anal Bioanal Chem 2014; 406:2975-85. [DOI: 10.1007/s00216-014-7723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
|