1
|
Gouveia G, Saateh A, Swietlikowska A, Scarpellini C, Tsang E, Altug H, Merkx M, Dillen A, Leirs K, Spasic D, Lammertyn J, Gothelf KV, Bonedeau E, Porzberg N, Smeets RL, Koenen HJPM, Prins MWJ, de Jonge MI. Continuous Biosensing to Monitor Acute Systemic Inflammation, a Diagnostic Need for Therapeutic Guidance. ACS Sens 2025; 10:4-14. [PMID: 39692622 PMCID: PMC11773571 DOI: 10.1021/acssensors.4c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Continuous monitoring of acute inflammation can become a very important next step for guiding therapeutic interventions in severely ill patients. This Perspective discusses the current medical need for patients with acute inflammatory diseases and the potential of continuous biosensing technologies. First, we discuss biomarkers that could help to monitor the state of a patient with acute systemic inflammation based on theoretical studies and empirical data. Then, based on the state of the art, we describe sensing strategies that could be applied for the continuous monitoring of acute inflammatory biomarkers, followed by challenges that must be overcome. Nanoswitch-based continuous biosensors enable suitable measurement frequencies but still lack sensitivity, while regeneration risks lower sensor reliability. Developments are still needed in bioreceptors and molecular architectures, regeneration techniques, combined with suitable sampling and sample pretreatment methods, for bringing continuous biosensing of inflammation closer to reality. Furthermore, collaborations between healthcare professionals and scientists, regulatory bodies, and biosensor engineers are needed for a successful translation of sensing technologies from the laboratory to clinical practice.
Collapse
Affiliation(s)
- Guilherme Gouveia
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Abtin Saateh
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Anna Swietlikowska
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
| | - Claudia Scarpellini
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Emily Tsang
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000 C, Denmark
| | - Hatice Altug
- Institute
of Bioengineering, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Maarten Merkx
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
| | - Annelies Dillen
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Karen Leirs
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Dragana Spasic
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Jeroen Lammertyn
- Department
of Biosystems - Biosensors Group, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kurt V. Gothelf
- Department
of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000 C, Denmark
| | - Estelle Bonedeau
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Nicola Porzberg
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ruben L. Smeets
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
- Department
of Laboratory Medicine, Radboudumc Laboratory for Diagnostics, Radboud University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Hans J. P. M. Koenen
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| | - Menno W. J. Prins
- Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, Eindhoven 5600MB, The Netherlands
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5600MB, The Netherlands
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5600MB, The Netherlands
- Helia Biomonitoring, De Lismortel 31, 5612 AR Eindhoven, The Netherlands
| | - Marien I. de Jonge
- Department
of Laboratory Medicine, Laboratory of Medical Immunology, Radboud
Community for Infectious Diseases, Radboud
University Medical Center, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
2
|
Li M, Lin D, Yao S, Zhang Q. Study on antibody adsorption and elution performance of carboxyl and hydrophobic groups on mixed-mode ligands. J Sep Sci 2022; 45:2946-2955. [PMID: 35716379 DOI: 10.1002/jssc.202200342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/08/2022]
Abstract
Molecular interactions between ligands and target biomolecules are crucial in the development of chromatographic techniques for the separation and purification of biotherapeutics. In this study, the role of functional moieties on a mixed-mode ligand (phenylalanine-tyrosine-glutamate-5-aminobenzimidazole) for human immunoglobulin G purification was investigated and a detailed mechanism was discussed. A similar ligand with glutamic acid substituted by glutamine (phenylalanine-tyrosine-glutamine-5-aminobenzimidazole) together with other resins including a commercial resin (CM Bestarose Fast Flow), phenylalanine-tyrosine-glutamate, glutamate-5-aminobenzimidazole, and 5-aminobenzimidazole resins were prepared for comparison. Molecular dynamics simulation and experimental studies were used to analyze the difference between these ligands. The results showed that the carboxyl group of phenylalanine-tyrosine-glutamate-5-aminobenzimidazole contributed 70% of the electrostatic interaction during human immunoglobulin G binding, and 5-aminobenzimidazole provided electrostatic repulsion for desorption, which showed low selectivity and binding capacities at pH 4.0 (dynamic binding capacities at 10% breakthrough of human immunoglobulin G = 1.0 mg/ml resin, dynamic binding capacities at 10% breakthrough of human serum albumin = 1.2 mg/ml resin) when used as an individual resin ligand. The results showed in this study demonstrated that it is possible to achieve optimal antibody separation and purification through reasonable ligand design by understanding the performance of key functional moieties in binding and elution processes.
Collapse
Affiliation(s)
- Mengting Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Dongqiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Shanjing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Qilei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
3
|
Fang YM, Lin DQ, Yao SJ. Tetrapeptide ligands screening for antibody separation and purification by molecular simulation and experimental verification. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
4
|
Bilodeau CL, Lau EY, Roush DJ, Snyder MA, Cramer SM. Behavior of Water Near Multimodal Chromatography Ligands and Its Consequences for Modulating Protein-Ligand Interactions. J Phys Chem B 2021; 125:6112-6120. [PMID: 34097423 DOI: 10.1021/acs.jpcb.1c01549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multimodal chromatography is a powerful approach for purifying proteins that uses ligands containing multiple modes of interaction. Recent studies have shown that selectivity in multimodal chromatographic separations is a function of the ligand structure and geometry. Here, we performed molecular dynamics simulations to explore how the ligand structure and geometry affect ligand-water interactions and how these differences in solution affect the nature of protein-ligand interactions. Our investigation focused on three chromatography ligands: Capto MMC, Nuvia cPrime, and Prototype 4, a structural variant of Nuvia cPrime. First, the solvation characteristics of each ligand were quantified via three metrics: average water density, fluctuations, and residence time. We then explored how solvation was perturbed when the ligand was bound to the protein surface and found that the probability of the phenyl ring dewetting followed the order: Capto MMC > Prototype 4 > Nuvia cPrime. To explore how these differences in dewetting affect protein-ligand interactions, we calculated the probability of each ligand binding to different types of residues on the protein surface and found that the probability of binding to a hydrophobic residue followed the same order as the dewetting behavior. This study illustrates the role that wetting and dewetting play in modulating protein-ligand interactions.
Collapse
Affiliation(s)
- Camille L Bilodeau
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Edmond Y Lau
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - David J Roush
- Biologics Process R&D, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Mark A Snyder
- Process Chromatography Division, Bio-Rad Laboratories, 6000 James Watson Drive, Hercules, California 94547, United States
| | - Steven M Cramer
- Howard P. Isermann Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
5
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
6
|
Fang YM, Chen SG, Lin DQ, Yao SJ. A new tetrapeptide biomimetic chromatographic resin for antibody separation with high adsorption capacity and selectivity. J Chromatogr A 2019; 1604:460474. [DOI: 10.1016/j.chroma.2019.460474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 01/03/2023]
|
7
|
Fang YM, Lin DQ, Yao SJ. Review on biomimetic affinity chromatography with short peptide ligands and its application to protein purification. J Chromatogr A 2018; 1571:1-15. [DOI: 10.1016/j.chroma.2018.07.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/12/2018] [Accepted: 07/29/2018] [Indexed: 10/28/2022]
|
8
|
Zhang X, Zhang R, Zong W, Liu R. Interactions of three bisphenol analogues with hemoglobin investigated by spectroscopy and molecular docking. J Mol Recognit 2018; 32:e2758. [DOI: 10.1002/jmr.2758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 06/21/2018] [Accepted: 06/30/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Xun Zhang
- School of Environmental Science and EngineeringShandong University, China‐America CRC for Environment & Health, Shandong Province Qingdao Shandong China
| | - Rui Zhang
- School of Environmental Science and EngineeringShandong University, China‐America CRC for Environment & Health, Shandong Province Qingdao Shandong China
| | - Wansong Zong
- College of Population, Resources and EnvironmentShandong Normal University Jinan Shandong China
| | - Rutao Liu
- School of Environmental Science and EngineeringShandong University, China‐America CRC for Environment & Health, Shandong Province Qingdao Shandong China
| |
Collapse
|
9
|
Jefferis R. Recombinant Proteins and Monoclonal Antibodies. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 175:281-318. [DOI: 10.1007/10_2017_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Tong HF, Lin DQ, Chu WN, Zhang QL, Gao D, Wang RZ, Yao SJ. Multimodal charge-induction chromatography for antibody purification. J Chromatogr A 2016; 1429:258-64. [DOI: 10.1016/j.chroma.2015.12.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/09/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
11
|
Yan J, Zhang QL, Tong HF, Lin DQ, Yao SJ. Hydrophobic charge-induction resin with 5-aminobenzimidazol as the functional ligand: preparation, protein adsorption and immunoglobulin G purification. J Sep Sci 2015; 38:2387-93. [DOI: 10.1002/jssc.201500178] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Jun Yan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou China
| | - Qi-Lei Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou China
| | - Hong-Fei Tong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education; College of Chemical and Biological Engineering, Zhejiang University; Hangzhou China
| |
Collapse
|