1
|
Lebedeva NS, Koifman OI. Supramolecular Systems Based on Macrocyclic Compounds with Proteins: Application Prospects. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
2
|
Gisriel CJ, Flesher DA, Shen G, Wang J, Ho MY, Brudvig GW, Bryant DA. Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. J Biol Chem 2022; 298:101408. [PMID: 34793839 PMCID: PMC8689207 DOI: 10.1016/j.jbc.2021.101408] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023] Open
Abstract
Far-red light photoacclimation exhibited by some cyanobacteria allows these organisms to use the far-red region of the solar spectrum (700-800 nm) for photosynthesis. Part of this process includes the replacement of six photosystem I (PSI) subunits with isoforms that confer the binding of chlorophyll (Chl) f molecules that absorb far-red light (FRL). However, the exact sites at which Chl f molecules are bound are still challenging to determine. To aid in the identification of Chl f-binding sites, we solved the cryo-EM structure of PSI from far-red light-acclimated cells of the cyanobacterium Synechococcus sp. PCC 7335. We identified six sites that bind Chl f with high specificity and three additional sites that are likely to bind Chl f at lower specificity. All of these binding sites are in the core-antenna regions of PSI, and Chl f was not observed among the electron transfer cofactors. This structural analysis also reveals both conserved and nonconserved Chl f-binding sites, the latter of which exemplify the diversity in FRL-PSI among species. We found that the FRL-PSI structure also contains a bound soluble ferredoxin, PetF1, at low occupancy, which suggests that ferredoxin binds less transiently than expected according to the canonical view of ferredoxin-binding to facilitate electron transfer. We suggest that this may result from structural changes in FRL-PSI that occur specifically during FRL photoacclimation.
Collapse
Affiliation(s)
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
3
|
Uchida H, Mizohata E, Okada S. Docking analysis of models for 4-hydroxy-3-methylbut-2-enyl diphosphate reductase and a ferredoxin from Botryococcus braunii, race B. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:297-301. [PMID: 31819737 PMCID: PMC6879371 DOI: 10.5511/plantbiotechnology.18.0601a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/01/2018] [Indexed: 06/10/2023]
Abstract
The green microalga Botryococcus braunii Showa, which produces large amounts of triterpene hydrocarbons, exclusively uses the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosyntheses, and the terminal enzyme in this pathway, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), is regarded as a light-dependent key regulatory enzyme. In order to investigate the possible association of HDR and ferredoxin in this organism, we constructed tertiary structure models of B. braunii HDR (BbHDR) and one of ferredoxin families in the alga, a photosynthetic electron transport F (BbPETF)-like protein, by using counterparts from E. coli and Chlamydomonas reinhardtii as templates, respectively, and performed docking analysis of these two proteins. After docked models are superimposed onto their counterpart proteins in a non-photosynthetic organism, Plasmodium falciparum, the BbPETF-like protein comes in contact with the backside of BbHDR, which was defined in a previous report (Rekittke et al. 2013), and the distance of the two Fe-S centers is 14.7 Å. This distance is in almost the same level as that for P. falicarum, 12.6 Å. To our knowledge, this is the first model suggesting the possible association of HDR with a ferredoxin in O2-evolving photosynthetic organisms.
Collapse
Affiliation(s)
- Hidenobu Uchida
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Gobancho, Chiyoda, Tokyo 102-0076, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo 113-8657, Japan
- Japan Science and Technology Agency-Core Research for Evolutional Science and Technology (CREST), Gobancho, Chiyoda, Tokyo 102-0076, Japan
| |
Collapse
|
4
|
Marco P, Kozuleva M, Eilenberg H, Mazor Y, Gimeson P, Kanygin A, Redding K, Weiner I, Yacoby I. Binding of ferredoxin to algal photosystem I involves a single binding site and is composed of two thermodynamically distinct events. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:234-243. [DOI: 10.1016/j.bbabio.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
|
5
|
Kapoor K, Cashman DJ, Nientimp L, Bruce BD, Baudry J. Binding Mechanisms of Electron Transport Proteins with Cyanobacterial Photosystem I: An Integrated Computational and Experimental Model. J Phys Chem B 2018; 122:1026-1036. [PMID: 29211957 DOI: 10.1021/acs.jpcb.7b08307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stromal domain (PsaC, D, and E) of photosystem I (PSI) in cyanobacteria accepts electrons from PsaA and PsaB of photosystem I (PSI). These electrons are then used in the reduction of transiently bound ferredoxin (Fd) or flavodoxin. Experimental X-ray and NMR structures are known for all of these protein partners separately, yet to date, there is no known experimental structure of the PSI/Fd complexes in the published literature. Computational models of Fd docked with the stromal domain of cyanobacterial PSI were assembled here starting from X-ray and NMR structures of PSI and Fd. Predicted models of specific regions of protein-protein interactions were built on the basis of energetic frustration, residue conservation and evolutionary importance, as well as from experimental site-directed mutagenesis and cross-linking studies. Microsecond time-scale molecular dynamics simulations of the PSI/Fd complexes suggest, rather than a single complex structure, the possible existence of multiple transient complexes of Fd bound to PSI.
Collapse
Affiliation(s)
- Karan Kapoor
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics , Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Derek J Cashman
- Department of Chemistry, Tennessee Technological University , Box 5055, Cookeville, Tennessee 38505-0001, United States
| | - Luke Nientimp
- Department of Chemistry, Tennessee Technological University , Box 5055, Cookeville, Tennessee 38505-0001, United States
| | - Barry D Bruce
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Jerome Baudry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics , Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Mignée C, Mutoh R, Krieger-Liszkay A, Kurisu G, Sétif P. Gallium ferredoxin as a tool to study the effects of ferredoxin binding to photosystem I without ferredoxin reduction. PHOTOSYNTHESIS RESEARCH 2017; 134:251-263. [PMID: 28205062 DOI: 10.1007/s11120-016-0332-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/27/2016] [Indexed: 06/06/2023]
Abstract
Reduction of ferredoxin by photosystem I (PSI) involves the [4Fe-4S] clusters FA and FB harbored by PsaC, with FB being the direct electron transfer partner of ferredoxin (Fd). Binding of the redox-inactive gallium ferredoxin to PSI was investigated by flash-absorption spectroscopy, studying both the P700+ decay and the reduction of the native iron Fd in the presence of FdGa. FdGa binding resulted in a faster recombination between P700+ and (FA, FB)-, a slower electron escape from (FA, FB)- to exogenous acceptors, and a decreased amount of intracomplex FdFe reduction, in accordance with competitive binding between FdFe and FdGa. [FdGa] titrations of these effects revealed that the dissociation constant for the PSI:FdGa complex is different whether (FA, FB) is oxidized or singly reduced. This difference in binding, together with the increase in the recombination rate, could both be attributed to a c. -30 mV shift of the midpoint potential of (FA, FB), considered as a single electron acceptor, due to FdGa binding. This effect of FdGa binding, which can be extrapolated to FdFe because of the highly similar structure and the identical charge of the two Fds, should help irreversibility of electron transfer within the PSI:Fd complex. The effect of Fd binding on the individual midpoint potentials of FA and FB is also discussed with respect to the possible consequences on intra-PSI electron transfer and on the escape process.
Collapse
Affiliation(s)
- Clara Mignée
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Anja Krieger-Liszkay
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Pierre Sétif
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France.
| |
Collapse
|
7
|
Ferreiro DU, Komives EA, Wolynes PG. Frustration, function and folding. Curr Opin Struct Biol 2017; 48:68-73. [PMID: 29101782 DOI: 10.1016/j.sbi.2017.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023]
Abstract
Natural protein molecules are exceptional polymers. Encoded in apparently random strings of amino-acids, these objects perform clear physical tasks that are rare to find by simple chance. Accurate folding, specific binding, powerful catalysis, are examples of basic chemical activities that the great majority of polypeptides do not display, and are thought to be the outcome of the natural history of proteins. Function, a concept genuine to Biology, is at the core of evolution and often conflicts with the physical constraints. Locating the frustration between discrepant goals in a recurrent system leads to fundamental insights about the chances and necessities that shape the encoding of biological information.
Collapse
Affiliation(s)
- Diego U Ferreiro
- Protein Physiology Lab, FCEyN-Universidad de Buenos Aires, IQUIBICEN/CONICET, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA; Department of Chemistry, Rice University, Houston, TX, USA; Department of Physics, Rice University, Houston, TX, USA; Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
8
|
Simmerman RF, Zhu T, Baker DR, Wang L, Mishra SR, Lundgren CA, Bruce BD. Engineering Photosystem I Complexes with Metal Oxide Binding Peptides for Bioelectronic Applications. Bioconjug Chem 2015; 26:2097-105. [DOI: 10.1021/acs.bioconjchem.5b00374] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard F. Simmerman
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States
| | - Tuo Zhu
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States
| | - David R. Baker
- Sensors
and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Lijia Wang
- Department
of Physics, University of Memphis, Memphis, Tennessee 38152, United States
| | - Sanjay R. Mishra
- Department
of Physics, University of Memphis, Memphis, Tennessee 38152, United States
| | - Cynthia A. Lundgren
- Sensors
and Electron Devices Directorate, U.S. Army Research Laboratory, Adelphi, Maryland 20783, United States
| | - Barry D. Bruce
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37919, United States
| |
Collapse
|