1
|
Zhang T, Berghaus M, Li Y, Song Q, Stollenwerk MM, Persson J, Shea KJ, Sellergren B, Lv Y. PSMA-Targeting Imprinted Nanogels for Prostate Tumor Localization and Imaging. Adv Healthc Mater 2025; 14:e2401929. [PMID: 39690809 DOI: 10.1002/adhm.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer cells and tumor vasculature, making it an important biomarker. However, conventional PSMA-targeting agents like antibodies and small molecules have limitations. Antibodies exhibit instability and complex production, while small molecules show lower specificity and higher toxicity. Herein, this work develops a novel PSMA-targeting synthetic antibody to address prior limitations. This work synthesizes fluorescently labelled, N-isopropylacrylamide-based epitope imprinted nanogels (MIP-M) using a dispersion of magnetic nanoparticles as template carriers with a linear epitope from PSMA's extracellular apical domain as the template. MIP-M demonstrates high binding affinities for both the epitope template (apparent KD = 6 × 10-10 м) and PSMA (apparent KD = 2.5 × 10-9 м). Compared to reference peptides and human serum albumin, MIP-M indicates high specificity. Flow cytometry and confocal laser scanning microscopy comparing cell lines displaying normal (PC3) and enhanced (LNCaP) PSMA expression levels, revealed that MIP-M and a PSMA antibody exhibits comparable binding preferences for the latter cell line. Moreover, MIP-M demonstrates selectivity on par with the PSMA antibody for targeting PSMA-positive prostate tumor over normal tissue, enabling discrimination. This MIP-M addresses stability, production, specificity and toxicity limitations of prior targeting agents and offer a promising alternative for PSMA-directed cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
| | - Melanie Berghaus
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227, Dortmund, Germany
| | - Yuan Li
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingmei Song
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Maria M Stollenwerk
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
| | - Jenny Persson
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
| | - Kenneth J Shea
- Department of Chemistry, University of California Irvine, California, 92697, USA
| | - Börje Sellergren
- Department of Biomedical Sciences, Faculty of Health and Society, Malmö University, Malmö, 20506, Sweden
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227, Dortmund, Germany
| | - Yongqin Lv
- State Key Laboratory of Organic-Inorganic Composites, International Joint Bioenergy Laboratory of Ministry of Education, National Energy Research and Development Center for Biorefinery, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Srivastava A, Harijan M, Prasad R, Singh M. Dual template (epitope) imprinted electrode for sensing bacterial protein with high selectivity. J Mol Recognit 2024; 37:e3087. [PMID: 38686731 DOI: 10.1002/jmr.3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Epitope imprinting has shown better prospects to synthesize synthetic receptors for proteins. Here, dual epitope imprinted polymer electrode (DEIP) matrix was fabricated on gold surface of electrochemical quartz crystal microbalance (EQCM) for recognition of target epitope sequence in blood samples of patients suffering from brain fever. Epitope sequences from outer membrane protein Por B of Neisseria meningitidis (MC58) bacteria predicted through immunoinformatic tools were chosen for imprinting. Self-assembled monolayers (SAM) of cysteine appended epitope sequences on gold nanoparticles were subjected to polymerization prior to electrodeposition on gold coated EQCM electrode. The polymeric matrix was woven around the cysteine appended epitope SAMs through multiple monomers (3-sulfo propyl methacrylate potassium salt (3-SPMAP), benzyl methacrylate (BMA)) and crosslinker (N, N'-methylene-bis-acrylamide). On extraction of the peptide sequences, imprinted cavities were able to selectively and specifically bind targeted epitope sequences in laboratory samples as well as 'real' samples of patients. Selectivity of sensor was examined through mismatched peptide sequences and certain plasma proteins also. The sensor was able to show specific binding towards the blood samples of infected patients, even in the presence of 'matrix' and other plasma proteins such as albumin and globulin. Even other peptide sequences, similar to epitope sequences only with one or two amino acid mismatches were also unable to show any binding. The analytical performance of DEIP-EQCM sensor was tested through selectivity, specificity, matrix effect, detection limit (0.68-1.01 nM), quantification limit (2.05-3.05 nM) and reproducibility (RSD ~ 5%). Hence, a diagnostic tool for bacterium causing meningitis is successfully fabricated in a facile manner which will broaden the clinical access and make efficient population screening feasible.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Manjeet Harijan
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Rajniti Prasad
- Department of Paediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Meenakshi Singh
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Patel R, Mitra B, Vinchurkar M, Adami A, Patkar R, Giacomozzi F, Lorenzelli L, Baghini MS. A review of recent advances in plant-pathogen detection systems. Heliyon 2022; 8:e11855. [DOI: 10.1016/j.heliyon.2022.e11855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/19/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
|
4
|
Louadj L, Pagani A, Benghouzi P, Sabbah M, Griffete N. How Molecularly Imprinted Polymers can be Used for Diagnostic and Treatment of Tropical Diseases? CHEMISTRY AFRICA 2022. [PMCID: PMC9273706 DOI: 10.1007/s42250-022-00397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecularly imprinted polymers (MIPs) have been widely used in nanomedicine in the last few years. However, their use for diagnostic and treatment of tropical diseases is limited. Through this review, we aim to illustrate how MIPs were used to detect tropical disease and we show that they are not exploited enough in treatment. We finally show how MIPs could be used in the future in the treatment of tropical disease.
Collapse
|
5
|
Teixeira SPB, Reis RL, Peppas NA, Gomes ME, Domingues RMA. Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules. SCIENCE ADVANCES 2021; 7:eabi9884. [PMID: 34714673 PMCID: PMC8555893 DOI: 10.1126/sciadv.abi9884] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/07/2021] [Indexed: 05/27/2023]
Abstract
Molecular imprinting (MI) has been explored as an increasingly viable tool for molecular recognition in various fields. However, imprinting of biologically relevant molecules like proteins is severely hampered by several problems. Inspired by natural antibodies, the use of epitopes as imprinting templates has been explored to circumvent those limitations, offering lower costs and greater versatility. Here, we review the latest innovations in this technology, as well as different applications where MI polymers (MIPs) have been used to target biomolecules of interest. We discuss the several steps in MI, from the choice of epitope and functional monomers to the different production methods and possible applications. We also critically explore how MIP performance can be assessed by various parameters. Last, we present perspectives on future breakthroughs and advances, offering insights into how MI techniques can be expanded to new fields such as tissue engineering.
Collapse
Affiliation(s)
- Simão P. B. Teixeira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1801, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX 78712-1801, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX 78712-1801, USA
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
6
|
Wang X, Chen G, Zhang P, Jia Q. Advances in epitope molecularly imprinted polymers for protein detection: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1660-1671. [PMID: 33861232 DOI: 10.1039/d1ay00067e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Epitope molecularly imprinted polymers (EMIPs) are novel imprinted materials using short characteristic peptides as templates rather than entire proteins. To be specific, the amino acid sequence of the template peptide is the same as an exposed N- or C-terminus of a target protein, or its amino acid composition and sequence replicate a similar conformational arrangement as the same amino acid residues on the surface of the target protein. EMIPs have a good application prospect in protein research. Herein, we focus on classification of epitope imprinting techniques, methods of epitope immobilization on matrix materials including boronate affinity immobilization, covalent bonding immobilization, physical adsorption immobilization and metal ion chelation immobilization, and application of EMIPs in peptides, proteins, target imaging and target therapy fields. Finally, the main problems and future development are summarized.
Collapse
Affiliation(s)
- Xindi Wang
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | | | | | | |
Collapse
|
7
|
Dar KK, Shao S, Tan T, Lv Y. Molecularly imprinted polymers for the selective recognition of microorganisms. Biotechnol Adv 2020; 45:107640. [DOI: 10.1016/j.biotechadv.2020.107640] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/18/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022]
|
8
|
Lee MH, Thomas JL, Su ZL, Yeh WK, Monzel AS, Bolognin S, Schwamborn JC, Yang CH, Lin HY. Epitope imprinting of alpha-synuclein for sensing in Parkinson's brain organoid culture medium. Biosens Bioelectron 2020; 175:112852. [PMID: 33288425 DOI: 10.1016/j.bios.2020.112852] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) is a progressive nervous system disorder that affects movement, whose early signs may be mild and unnoticed. α-Synuclein has been identified as the major component of Lewy bodies and Lewy neurites, which are the characteristic proteinaceous deposits that are the hallmarks of PD. In this work, three alpha-synuclein peptides were synthesized as templates for the molecular imprinting of conductive polymers to enable recognition of alpha-synuclein via ultrasensitive electrochemical measurements. The peptide sequences encompassed specific residues where mutations are known to accelerate PD (though the target sequences, in this study, were wild-type.) The different peptide targets were all successfully imprinted, but with differing imprinting effectiveness, probably owing to differences in target carboxylic acids (which can bind to the aniline (AN) m-aminobenzenesulfonic acid (MSAN) MIP polymers.) Composition of the imprinted polymer, (the mole proportions of AN and MSAN), and the concentrations and sequences of imprinted peptide templates were optimized by measuring the electrochemical responses to target peptides. The imprinted electrode can detect alpha-synuclein at fg/mL levels, and was therefore used to measure alpha-synuclein in the culture medium of human brain organoids generated from normal and idiopathic PD patients.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Zi-Lin Su
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Wen-Kuan Yeh
- Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan; Taiwan Semiconductor Research Institute, Hsinchu, 30009, Taiwan
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Chien-Hsin Yang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
9
|
Kushwaha A, Srivastava J, Singh AK, Anand R, Raghuwanshi R, Rai T, Singh M. Epitope imprinting of Mycobacterium leprae bacteria via molecularly imprinted nanoparticles using multiple monomers approach. Biosens Bioelectron 2019; 145:111698. [DOI: 10.1016/j.bios.2019.111698] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/03/2019] [Accepted: 09/10/2019] [Indexed: 11/26/2022]
|
10
|
Gupta N, Singh RS, Shah K, Prasad R, Singh M. Epitope imprinting of iron binding protein ofNeisseria meningitidisbacteria through multiple monomers imprinting approach. J Mol Recognit 2018; 31:e2709. [DOI: 10.1002/jmr.2709] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/04/2018] [Accepted: 02/14/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Neha Gupta
- Department of Chemistry, MMV; Banaras Hindu University; Varanasi 221005 India
| | - Roop Shikha Singh
- Department of Chemistry, Institute of Science; Banaras Hindu University; Varanasi 221005 India
| | - Kavita Shah
- Institute of Environment and Sustainable Development; Banaras Hindu University; Varanasi 221005 India
| | - Rajniti Prasad
- Department of Pediatrics, Institute of Medical Sciences; Banaras Hindu University; Varanasi 221005 India
| | - Meenakshi Singh
- Department of Chemistry, MMV; Banaras Hindu University; Varanasi 221005 India
| |
Collapse
|
11
|
Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. MATERIALS 2018; 11:ma11030448. [PMID: 29562700 PMCID: PMC5873027 DOI: 10.3390/ma11030448] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
Piezoelectric biosensors are a group of analytical devices working on a principle of affinity interaction recording. A piezoelectric platform or piezoelectric crystal is a sensor part working on the principle of oscillations change due to a mass bound on the piezoelectric crystal surface. In this review, biosensors having their surface modified with an antibody or antigen, with a molecularly imprinted polymer, with genetic information like single stranded DNA, and biosensors with bound receptors of organic of biochemical origin, are presented and discussed. The mentioned recognition parts are frequently combined with use of nanoparticles and applications in this way are also introduced. An overview of the current literature is given and the methods presented are commented upon.
Collapse
|