1
|
A N B, O D H, N S K, A V Z, B B D. Immunodetection of Poorly Soluble Substances: Limitations and Their Overcoming. Crit Rev Anal Chem 2024:1-26. [PMID: 39360478 DOI: 10.1080/10408347.2024.2402835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Immunoassays based on the specific antigen-antibody interactions are efficient tools to detect various compounds and estimate their content. Usually, these assays are implemented in water-saline media with composition close to physiological conditions. However, many substances are insoluble or cannot be molecularly dispersed in such media, which objectively creates problems when interacting in aquatic environments. Thus, obtaining immunoreactants and implementing immunoassays of these substances need special methodological solutions. Hydrophobicity of antigens as well as their limited ability to functionalization and conjugation are often overlooked when developing immunoassays for these compounds. The main key finding is the possibility to influence the behavior of hydrophobic compounds for immunoassays, which requires specific approaches summarized in the review. Using the examples of two groups of compounds-surfactants (alkyl- and bisphenols) and fullerenes, we systematized the existing knowledge and experience in the development of immunoassays. This review addresses the challenges of immunodetection of poorly soluble substances and proposes solutions such as the use of hydrotropes, other solubilization techniques, and alternative receptors (aptamers and molecularly imprinted polymers).
Collapse
Affiliation(s)
- Berlina A N
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Hendrickson O D
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Komova N S
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Zherdev A V
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| | - Dzantiev B B
- Research Center of Biotechnology of the Russian Academy of Sciences, A. N. Bach Institute of Biochemistry, Moscow, Russia
| |
Collapse
|
2
|
Chen Z, Yang Y, Cui X, Chai L, Liu H, Pan Y, Zhang Y, Xie Y, Le T. Process, advances, and perspectives of graphene oxide-SELEX for the development of aptamer molecular probes: A comprehensive review. Anal Chim Acta 2024; 1320:343004. [PMID: 39142771 DOI: 10.1016/j.aca.2024.343004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Aptamers are screened via the systematic evolution of ligands by exponential enrichment (SELEX) and are widely used in molecular diagnostics and targeted therapies. The development of efficient and convenient SELEX technology has facilitated rapid access to high-performance aptamers, thereby advancing the aptamer industry. Graphene oxide (GO) serves as an immobilization matrix for libraries in GO-SELEX, making it suitable for screening aptamers against diverse targets. RESULTS This review summarizes the detailed steps involved in GO-SELEX, including monitoring methods, various sublibrary acquisition methods, and practical applications from its inception to the present day. In addition, the potential of GO-SELEX in the development of broad-spectrum aptamers is explored, and its current limitations for future development are emphasized. This review effectively promotes the application of the GO-SELEX technique by providing valuable insights and assisting researchers interested in conducting related studies. SIGNIFICANCE AND NOVELTY To date, no review on the topic of GO-SELEX has been published, making it challenging for researchers to initiate studies in this area. We believe that this review will broaden the SELEX options available to researchers, ensuring that they can meet the growing demand for molecular probes in the scientific domain.
Collapse
Affiliation(s)
- Zhuoer Chen
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Ying Yang
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Xinge Cui
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Luwei Chai
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Hongbing Liu
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yangwei Pan
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yongkang Zhang
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yujia Xie
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China
| | - Tao Le
- Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing, 401331, PR China.
| |
Collapse
|
3
|
Zhu C, Feng Z, Qin H, Chen L, Yan M, Li L, Qu F. Recent progress of SELEX methods for screening nucleic acid aptamers. Talanta 2024; 266:124998. [PMID: 37527564 DOI: 10.1016/j.talanta.2023.124998] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Nucleic acid aptamers are oligonucleotide sequences screened by an in vitro methodology called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Known as "chemical antibodies", aptamers can achieve specific recognition towards the targets through conformational changes with high affinity, and possess multiple attractive features including, but not limited to, easy and inexpensive to prepare by chemical synthesis, relatively stable and low batch-to-batch variability, easy modification and signal amplification, and low immunogenicity. Now, aptamers are attracting researchers' attentions from more than 25 disciplines, and have showed great potential for application and economic benefits in disease diagnosis, environmental detection, food security, drug delivery and discovery. Although some aptamers exist naturally as the ligand-binding elements of riboswitches, SELEX is a recognized method for aptamers screening. After thirty-two years of development, a series of SELEX methods have been investigated and developed, as well as have shown unique advantages to improve sequence performances or to explore screening mechanisms. This review would mainly focus on the novel or improved SELEX methods that are available in the past five years. Firstly, we present a clear overview of the aptamer's history, features, and SELEX development. Then, we highlight the specific examples to emphasize the recent progress of SELEX methods in terms of carrier materials, technical improvements, real sample-improved screening, post-SELEX and other methods, as well as their respects of screening strategies, implementation features, screening parameters. Finally, we discuss the remaining challenges that have the potential to hinder the success of SELEX and aptamers in practical applications, and provide the suggestions and future directions for developing more convenient, efficient, and stable SELEX methods in the future.
Collapse
Affiliation(s)
- Chao Zhu
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Ziru Feng
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China
| | - Lu Chen
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Provincial Key Laboratory Test Technology on Food Quality and Safety, Jinan, 250100, China.
| | - Linsen Li
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feng Qu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Priyadarshini E, Parambil AM, Rajamani P, Ponnusamy VK, Chen YH. Exposure, toxicological mechanism of endocrine disrupting compounds and future direction of identification using nano-architectonics. ENVIRONMENTAL RESEARCH 2023; 225:115577. [PMID: 36871939 DOI: 10.1016/j.envres.2023.115577] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Endocrine-disrupting compounds (EDC) are a group of exogenous chemicals that structurally mimic hormones and interfere with the hormonal signaling cascade. EDC interacts with hormone receptors, transcriptional activators, and co-activators, altering the signaling pathway at both genomic and non-genomic levels. Consequently, these compounds are responsible for adverse health ailments such as cancer, reproductive issues, obesity, and cardiovascular and neurological disorders. The persistent nature and increasing incidence of environmental contamination from anthropogenic and industrial effluents have become a global concern, resulting in a movement in both developed and developing countries to identify and estimate the degree of exposure to EDC. The U.S. Environment Protection Agency (EPA) has outlined a series of in vitro and in vivo assays to screen potential endocrine disruptors. However, the multidisciplinary nature and concerns over the widespread application demand alternative and practical techniques for identifying and estimating EDC. The review chronicles the state-of-art 20 years (1990-2023) of scientific literature regarding EDC's exposure and molecular mechanism, highlighting the toxicological effects on the biological system. Alteration in signaling mechanisms by representative endocrine disruptors such as bisphenol A (BPA), diethylstilbestrol (DES), and genistein has been emphasized. We further discuss the currently available assays and techniques for in vitro detection and propose the prominence of designing nano-architectonic-sensor substrates for on-site detection of EDC in the contaminated aqueous environment.
Collapse
Affiliation(s)
- Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajith Manayil Parambil
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vinoth Kumar Ponnusamy
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City, 804, Taiwan; PhD Program in Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yi-Hsun Chen
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
5
|
Azzouz A, Kumar V, Hejji L, Kim KH. Advancements in nanomaterial-based aptasensors for the detection of emerging organic pollutants in environmental and biological samples. Biotechnol Adv 2023; 66:108156. [PMID: 37084799 DOI: 10.1016/j.biotechadv.2023.108156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The combination of nanomaterials (NMs) and aptamers into aptasensors enables highly specific and sensitive detection of diverse pollutants. The great potential of aptasensors is recognized for the detection of diverse emerging organic pollutants (EOPs) in different environmental and biological matrices. In addition to high sensitivity and selectivity, NM-based aptasensors have many other advantages such as portability, miniaturization, facile use, and affordability. This work showcases the recent advances achieved in the design and fabrication of NM-based aptasensors for monitoring EOPs (e.g., hormones, phenolic contaminants, pesticides, and pharmaceuticals). On the basis of their sensing mechanisms, the covered aptasensing systems are classified as electrochemical, colorimetric, PEC, fluorescence, SERS, and ECL. Special attention has been paid to the fabrication processes, analytical achievements, and sensing mechanisms of NM-based aptasensors. Further, the practical utility of aptasensing approaches has also been assessed based on their basic performance metrics (e.g., detection limits, sensing ranges, and response times).
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares, Jaén, Spain
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
6
|
Satish S, Dey A, Tharmavaram M, Khatri N, Rawtani D. Risk assessment of selected pharmaceuticals on wildlife with nanomaterials based aptasensors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155622. [PMID: 35508236 DOI: 10.1016/j.scitotenv.2022.155622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals have improved human and veterinary health tremendously over the years. But the implications of the presence of pharmaceuticals in the environment on terrestrial, avian, and aquatic organisms are still not fully comprehended. The bioaccumulation and biomagnifications of these chemicals through the food chain have long-term effects on the wildlife. The detection and quantification of such pharmaceutical residues in the environment is a tedious process and quicker methods are needed. Aptasensors are one such quick and reliable method for the identification of pharmaceutical residues in the wildlife. Aptasensors are a class of biosensors that work on the principles of biological recognition of elements. The aptamers are unique biological recognition elements with high specificity and affinity to various targets. Their efficiency makes them a very promising candidate for such sensitive research. In this review, the pharmaceutical threats to wildlife and their detection techniques using aptasensors have been discussed.
Collapse
Affiliation(s)
- Swathi Satish
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Aayush Dey
- School of Doctoral Studies & Research (SDSR), National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Maithri Tharmavaram
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Nitasha Khatri
- Gujarat Environment Management Institute, Department of Forest and Environment, Sector 10B, Jivraj Mehta Bhavan, Gandhinagar, Gujarat, India
| | - Deepak Rawtani
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India.
| |
Collapse
|
7
|
Lim H, Chang J, Kim KI, Moon Y, Lee S, Lee B, Lee JH, Lee J. On-chip selection of adenosine aptamer using graphene oxide-coated magnetic nanoparticles. BIOMICROFLUIDICS 2022; 16:044102. [PMID: 35909647 PMCID: PMC9337878 DOI: 10.1063/5.0095419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is a method that is generally used for developing aptamers, which have arisen the promising alternatives for antibodies. However, conventional SELEX methods have limitations, such as a limited selection of target molecules, time-consuming and complex fabrication processes, and labor-intensive processes, which result in low selection yields. Here, we used (i) graphene oxide (GO)-coated magnetic nanoparticles in the selection process for separation and label-free detection and (ii) a multilayered microfluidic device manufactured using a three-dimensionally printed mold that is equipped with automated control valves to achieve precise fluid flows. The developed on-chip aptamer selection device and GO-coated magnetic nanoparticles were used to screen aptamer candidates for adenosine in eight cycles of the selection process within approximately 2 h for each cycle. Based on results from isothermal titration calorimetry, an aptamer with a dissociation constant of 18.6 ± 1.5 μM was selected. Therefore, the on-chip platform based on GO-coated magnetic nanoparticles provides a novel label-free screening technology for biosensors and micro/nanobiotechnology for achieving high-quality aptamers.
Collapse
Affiliation(s)
| | - Junhyuck Chang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyung-il Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Youngkwang Moon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Saebom Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Byoungsang Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Authors to whom correspondence should be addressed:, Tel.: +82-31-290-7404 and , Tel.: +82-31-299-4845
| | - Jinkee Lee
- Authors to whom correspondence should be addressed:, Tel.: +82-31-290-7404 and , Tel.: +82-31-299-4845
| |
Collapse
|
8
|
Kim AR, Choi Y, Kim SH, Moon HS, Ko JH, Yoon MY. Development of a Novel ssDNA Sequence for a Glycated Human Serum Albumin and Construction of a Simple Aptasensor System Based on Reduced Graphene Oxide (rGO). BIOSENSORS 2020; 10:E141. [PMID: 33066521 PMCID: PMC7602221 DOI: 10.3390/bios10100141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
Abstract
Diabetes is one of the top 10 global causes of death. About one in 11 global adults have diabetes. As the disease progresses, the mortality rate increases, and complications can develop. Thus, early detection and effective management of diabetes are especially important. Herein, we present a novel glycated human serum albumin (GHSA) aptamer, i.e., GABAS-01, which has high affinity and specificity. The aptamer was selected by reduced graphene oxide-based systematic evolution of ligands by exponential enrichement (rGO-based SELEX) against GHSA. After five rounds of selection through gradually harsher conditions, GABAS-01 with high affinity and specificity for the target was obtained. GABAS-01 was labeled by FAM at the 5'-end and characterized by measuring the recovery of a fluorescence signal that is the result of fluorescence quenching effect of rGO. As a result, GABAS-01 had low-nanomolar Kd values of 1.748 ± 0.227 nM and showed a low limit of detection of 16.40 μg/mL against GHSA. This result shows the potential application of GABAS-01 as an effective on-site detection probe of GHSA. In addition, these properties of GABAS-01 are expected to contribute to detection of GHSA in diagnostic fields.
Collapse
Affiliation(s)
- A-Ru Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea; (A.-R.K.); (Y.C.); (S.-H.K.)
| | - Yeongmi Choi
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea; (A.-R.K.); (Y.C.); (S.-H.K.)
| | - Sang-Heon Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea; (A.-R.K.); (Y.C.); (S.-H.K.)
| | - Hyun-Seok Moon
- Sungsan Eng Co.ltd., Gumi 39377, Korea; (H.-S.M.); (J.-H.K.)
| | - Jae-Ho Ko
- Sungsan Eng Co.ltd., Gumi 39377, Korea; (H.-S.M.); (J.-H.K.)
| | - Moon-Young Yoon
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul 04763, Korea; (A.-R.K.); (Y.C.); (S.-H.K.)
| |
Collapse
|
9
|
Development of ssDNA Aptamers for Diagnosis and Inhibition of the Highly Pathogenic Avian Influenza Virus Subtype H5N1. Biomolecules 2020; 10:biom10081116. [PMID: 32731467 PMCID: PMC7465229 DOI: 10.3390/biom10081116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Avian influenza (AI) has severely affected the poultry industry worldwide and has caused the deaths of millions of birds. Highly pathogenic avian influenza virus is characterized by high mortality and the ability to transmit from birds to humans. Early diagnosis is difficult because of the variation in pathogenicity and the genetic diversity between virus subtypes. Therefore, development of a sensitive and accurate diagnostic system is an urgent priority. We developed ssDNA aptamer probes to detect AI viruses. Through seven rounds of SELEX to search for a probe specific to the highly pathogenic AI virus subtype H5N1, we identified 16 binding aptamers and selected two with the highest binding frequency. These two aptamers had strong binding affinities and low detection limits. We found that they could bind more specifically to H5N1, as compared to other subtypes. Furthermore, these aptamers inhibited hemagglutination, which is caused by the virus surface protein hemagglutinin. Our results indicate that our screened aptamers are effective molecular probes for diagnosing H5N1 and can be used as therapeutic agents to inhibit viral surface proteins. Sensitive diagnosis and suppression of avian influenza will help maintain a stable and healthy livestock industry, as well as protect human health.
Collapse
|
10
|
Vargas-Berrones K, Díaz de León-Martínez L, Bernal-Jácome L, Rodriguez-Aguilar M, Ávila-Galarza A, Flores-Ramírez R. Rapid analysis of 4-nonylphenol by solid phase microextraction in water samples. Talanta 2020; 209:120546. [DOI: 10.1016/j.talanta.2019.120546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
|
11
|
Detection of Nonylphenol with a Gold-Nanoparticle-Based Small-Molecule Sensing System Using an ssDNA Aptamer. Int J Mol Sci 2019; 21:ijms21010208. [PMID: 31892242 PMCID: PMC6981960 DOI: 10.3390/ijms21010208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 12/28/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) threaten many kinds of life throughout the world. These compounds function the same as sexual hormones, inducing precocious puberty, gynecomastia, etc., in the human body. To prevent excess exposure to nonylphenol (NP), a simple and rapid detection system is needed. In this study, we develop a nonylphenol-specific aptamer from a random single-stranded DNA library and test a rapid sensor system based on the aptamer and gold nanoparticles (AuNPs). The aptamer was screened by a methodology involving reduced graphene oxide (rGO). As a result of screening and sequencing, a DNA aptamer was developed that recognizes the target with high binding affinity (Kd = 194.2 ± 65.9 nM) and specificity. The sensor system developed using the aptamer and gold nanoparticles is sensitive (LOD = 2.239 nM). Circular dichroism (CD) spectrometry results show that the free aptamer binds to the target molecule. The aptamer was characterized using gold nanoparticles to measure UV absorbance. Our results suggest that the sensor system developed using this aptamer is useful for field diagnosis of small molecules.
Collapse
|
12
|
Choi S, Han J, Kim JH, Kim AR, Kim SH, Lee W, Yoon MY, Kim G, Kim YS. Advances in dermatology using DNA aptamer "Aptamin C" innovation: Oxidative stress prevention and effect maximization of vitamin C through antioxidation. J Cosmet Dermatol 2019; 19:970-976. [PMID: 31353789 PMCID: PMC7154658 DOI: 10.1111/jocd.13081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Vitamin C (also known as L-ascorbic acid) plays a critical role in reactive oxygen species (ROS) reduction and cell regeneration by protecting cell from oxidative stress. Although vitamin C is widely used in cosmetic and therapeutic markets, there is considerable evidence that vitamin C easily undergoes oxidation by air, pH, temperature, and UV light upon storage. This deficiency of vitamin C decreases its potency as an antioxidant and reduces the shelf-life of products containing vitamin C as its ingredient. To overcome the deficiency of vitamin C, we have developed Aptamin C, an innovative DNA aptamer maximizing the antioxidant efficacy of vitamin C by binding to the reduced form of vitamin C and delaying its oxidation. METHODS Binding of Aptamin C with vitamin C was determined using ITC analysis. ITC experiment was performed 0.2 mmol/L vitamin C that was injected 25 times in 2 µL aliquots into the 1.8 mL sample cell containing the Aptamin C at a concentration of 0.02 mmol/L. The data were fitted to a one-site binding isotherm using with origin program for ITC v.5.0. RESULTS To investigate the effect of Aptamin C and vitamin C complex in human skins, both in vitro and clinical tests were performed. We observed that the complex of Aptamin C and vitamin C was significantly effective in wrinkle improvement, whitening effect, and hydration increase. In the clinical test, subjects treated with the complex showed dramatic improvement in skin irritation and itching. No adverse reaction was presented by Aptamin C complex in the test. CONCLUSION Taken together, these results showed that Aptamin C, an innovative novel compound, should potentially be served as a key cosmeceutical ingredient for a range of skin conditions.
Collapse
Affiliation(s)
| | - Jeongmin Han
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul, Korea
| | | | - A-Ru Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seongdong-gu, Korea
| | - Sang-Heon Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seongdong-gu, Korea
| | - Weontae Lee
- Structural Biochemistry & Molecular Biophysics Laboratory, Department of Biochemistry, College of Life Sciences & Biotechnology, Yonsei University, Seoul, Korea
| | - Moon-Young Yoon
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seongdong-gu, Korea
| | | | | |
Collapse
|