1
|
Břehová P, Řezníčková E, Škach K, Jorda R, Dejmek M, Vojáčková V, Šála M, Kovalová M, Dračínský M, Dolníková A, Strmeň T, Kinnertová M, Chalupský K, Dvořáková A, Gucký T, Mertlíková Kaiserová H, Klener P, Nencka R, Kryštof V. Inhibition of FLT3-ITD Kinase in Acute Myeloid Leukemia by New Imidazo[1,2- b]pyridazine Derivatives Identified by Scaffold Hopping. J Med Chem 2023; 66:11133-11157. [PMID: 37535845 PMCID: PMC10461230 DOI: 10.1021/acs.jmedchem.3c00575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 08/05/2023]
Abstract
FLT3 kinase is a potential drug target in acute myeloid leukemia (AML). Patients with FLT3 mutations typically have higher relapse rates and worse outcomes than patients without FLT3 mutations. In this study, we investigated the suitability of various heterocycles as central cores of FLT3 inhibitors, including thieno[3,2-d]pyrimidine, pyrazolo[1,5-a]pyrimidine, imidazo[4,5-b]pyridine, pyrido[4,3-d]pyrimidine, and imidazo[1,2-b]pyridazine. Our assays revealed a series of imidazo[1,2-b]pyridazines with high potency against FLT3. Compound 34f showed nanomolar inhibitory activity against recombinant FLT3-ITD and FLT3-D835Y (IC50 values 4 and 1 nM, respectively) as well as in the FLT3-ITD-positive AML cell lines MV4-11, MOLM-13, and MOLM-13 expressing the FLT3-ITD-D835Y mutant (GI50 values of 7, 9, and 4 nM, respectively). In contrast, FLT3-independent cell lines were much less sensitive. In vitro experiments confirmed suppression of FLT3 downstream signaling pathways. Finally, the treatment of MV4-11 xenograft-bearing mice with 34f at doses of 5 and 10 mg/kg markedly blocked tumor growth without any adverse effects.
Collapse
Affiliation(s)
- Petra Břehová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Eva Řezníčková
- Department
of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech
Republic
| | - Kryštof Škach
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Radek Jorda
- Department
of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech
Republic
| | - Milan Dejmek
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Veronika Vojáčková
- Department
of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech
Republic
| | - Michal Šála
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Markéta Kovalová
- Department
of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech
Republic
| | - Martin Dračínský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Alexandra Dolníková
- Institute
of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Timotej Strmeň
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Monika Kinnertová
- Department
of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech
Republic
| | - Karel Chalupský
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Alexandra Dvořáková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Tomáš Gucký
- Department
of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech
Republic
| | - Helena Mertlíková Kaiserová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Pavel Klener
- Institute
of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Radim Nencka
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16000 Prague, Czech Republic
| | - Vladimír Kryštof
- Department
of Experimental Biology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 78371 Olomouc, Czech
Republic
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 5, 77900 Olomouc, Czech Republic
| |
Collapse
|
2
|
Pecina A, Eyrilmez SM, Köprülüoğlu C, Miriyala VM, Lepšík M, Fanfrlík J, Řezáč J, Hobza P. SQM/COSMO Scoring Function: Reliable Quantum-Mechanical Tool for Sampling and Ranking in Structure-Based Drug Design. Chempluschem 2020; 85:2362-2371. [PMID: 32609421 DOI: 10.1002/cplu.202000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Indexed: 12/17/2022]
Abstract
Quantum mechanical (QM) methods have been gaining importance in structure-based drug design where a reliable description of protein-ligand interactions is of utmost significance. However, strategies i. e. QM/MM, fragmentation or semiempirical (SQM) methods had to be pursued to overcome the unfavorable scaling of QM methods. Various SQM-based approaches have significantly contributed to the accuracy of docking and improvement of lead compounds. Parametrizations of SQM and implicit solvent methods in our laboratory have been instrumental to obtain a reliable SQM-based scoring function. The experience gained in its application for activity ranking of ligands binding to tens of protein targets resulted in setting up a faster SQM/COSMO scoring approach, which outperforms standard scoring methods in native pose identification for two dozen protein targets with ten thousand poses. Recently, SQM/COSMO was effectively applied in a proof-of-concept study of enrichment in virtual screening. Due to its superior performance, feasibility and chemical generality, we propose the SQM/COSMO approach as an efficient tool in structure-based drug design.
Collapse
Affiliation(s)
- Adam Pecina
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Saltuk M Eyrilmez
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Cemal Köprülüoğlu
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| | - Vijay Madhav Miriyala
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Jan Řezáč
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry, and Biochemistry of Czech Academy of Sciences, Flemingovo namesti 2, 166 10, Prague, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University, 771 46, Olomouc, Czech Republic
| |
Collapse
|