1
|
Laowichuwakonnukul K, Soontornworajit B, Arunpanichlert J, Rotkrua P. Simultaneous targeted delivery of doxorubicin and KRAS suppression by a hybrid molecule containing miR-143 and AS1411 aptamer. Sci Rep 2025; 15:10590. [PMID: 40148451 PMCID: PMC11950302 DOI: 10.1038/s41598-025-94159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Hybrid molecules can be engineered to target tumors by merging drugs with the same or distinct mechanisms of action. The coexistence of multiple pharmacologically active entities within the cancer cell enhances the therapeutic efficacy of the hybrid molecule compared to single-target inhibitors. KRAS is considered the most common oncogenic gene in human cancers and is targeted by tumor suppressor miR-143. Therefore, an increase in miR-143 expression is a promising way to inhibit CRC cell growth. This research aims to develop a hybrid anticancer drug carrier by combining miR-143 and AS1411 aptamers through a hybridization strand (MAH) and loading doxorubicin (Dox), a chemotherapy drug. The uptake capability of MAH into the SW480 CRC cells was confirmed by detecting fluorescence intensity with a fluorescence microscope. After treatment of MAH in SW480 cells, the level of miR-143 was increased, but KRAS expression was decreased for both mRNA and protein. KRAS downstream target proteins, ERK and AKT, were downregulated as well. Furthermore, it was confirmed that DOX could be gradually released from MAH, with approximately 95% released over 72 h. Treating cells with Dox-MAH resulted in the inhibition of cell proliferation and induction of apoptosis. The protein expression of procaspase-3 and Bcl-2 was decreased, while Bax was increased, confirming that Dox-MAH triggered the cell apoptosis. The success of this research proposed a new strategy for a drug delivery system, which has multiple functions simultaneously; CRC cell-specificity, Dox carrier, and miR-143 delivery.
Collapse
Affiliation(s)
- Khanittha Laowichuwakonnukul
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Boonchoy Soontornworajit
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application, Pathumthani, Thailand
| | - Jiraporn Arunpanichlert
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application, Pathumthani, Thailand
| | - Pichayanoot Rotkrua
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application, Pathumthani, Thailand.
| |
Collapse
|
2
|
Jiramitmongkon K, Rotkrua P, Khanchaitit P, Arunpanichlert J, Soontornworajit B. Multifunctional molecular hybrid for targeted colorectal cancer cells: Integrating doxorubicin, AS1411 aptamer, and T9/U4 ASO. PLoS One 2025; 20:e0317559. [PMID: 39946362 PMCID: PMC11825018 DOI: 10.1371/journal.pone.0317559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/31/2024] [Indexed: 02/16/2025] Open
Abstract
Colorectal cancer (CRC) poses a global health challenge, with current treatments often harming both cancerous and normal cells. To improve efficacy, a multifunctional drug delivery platform has been developed, integrating bioactive materials, anticancer agents, and targeted recognition ligands into a single molecule. This study aimed to create a molecular hybrid (MH) containing doxorubicin, AS1411 aptamer, and T9/U4 ASO to regulate SW480 cell proliferation. The AS1411 aptamer targets nucleolin, overexpressed on cancer cell membranes, while T9/U4 ASO inhibits human telomerase RNA activity, further hindering cancer cell proliferation. AS-T9/U4_MH was synthesized via oligonucleotide hybridization, followed by doxorubicin loading and evaluation of its impact on cell proliferation. Binding capability of this MH was verified using fluorescence microscopy and flow cytometry, demonstrating specific recognition of SW480 cells due to nucleolin availability on the cell surface. These findings were corroborated by both microscopy and flow cytometry. AS-T9/U4_MH exhibited anti-proliferative effects, with the doxorubicin-loaded system demonstrating encapsulation and reduced toxicity. Moreover, the presence of Dox within AS-T9/U4_MH led to a notable reduction in hTERT and vimentin expression in SW480 cells. Additionally, examination of apoptotic pathways unveiled a marked decrease in Bcl-2 expression and a simultaneous increase in Bax expression in SW480 cells treated with Dox-loaded AS-T9/U4_MH, indicating its impact on promoting apoptosis. This molecular hybrid shows promise as a platform for integrating chemotherapeutic drugs with bioactive materials for cancer therapy.
Collapse
Affiliation(s)
- Kanpitcha Jiramitmongkon
- Faculty of Science and Technology, Department of Chemistry, Thammasat University, Pathumthani, Thailand
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application, Pathumthani, Thailand
| | - Pichayanoot Rotkrua
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application, Pathumthani, Thailand
- Faculty of Medicine, Department of Preclinical Science, Division of Biochemistry, Thammasat University, Pathumthani, Thailand
| | - Paisan Khanchaitit
- National Nanotechnology Center, National Science and Technology Development Agency, Thailand Science Park, Pathumthani, Thailand
| | - Jiraporn Arunpanichlert
- Faculty of Science and Technology, Department of Chemistry, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application, Pathumthani, Thailand
| | - Boonchoy Soontornworajit
- Faculty of Science and Technology, Department of Chemistry, Thammasat University, Pathumthani, Thailand
- Thammasat University Research Unit in Innovation of Molecular Hybrid for Biomedical Application, Pathumthani, Thailand
| |
Collapse
|
3
|
Wu MS, Zhou ZR, Wang XY, Du XC, Li DW, Qian RC. Design of a Membrane-Anchored DNAzyme-Based Molecular Machine for Enhanced Cancer Therapy by Customized Cascade Regulation. ACS Pharmacol Transl Sci 2024; 7:2869-2877. [PMID: 39296274 PMCID: PMC11406680 DOI: 10.1021/acsptsci.4c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/21/2024]
Abstract
Synthetic DNAzyme-based structures enable dynamic cell regulation. However, engineering an effective and targeted DNAzyme-based structure to perform customizable multistep regulation remains largely unexplored. Herein, we designed a membrane-anchored DNAzyme-based molecular machine to implement dynamic inter- and intracellular cascade regulation, which realizes efficient T-cell/cancer cell interactions and subsequent receptor mediated cancer cell uptake. Using CD8+ T-cells and HeLa cancer cells as a proof of concept, we demonstrate that the designed DNAzyme-based molecular machine enables customized cascade regulation including (1) specific recognition between T-cells and cancer cells, (2) specific response and fluorescence sensing upon extracellular stimuli, and (3) cascade regulation including intercellular distance shortening, cell-cell communication, and intracellular delivery of anticancer drugs. Together, this work provides a promising pathway for customized cascade cell regulation based on a DNAzyme-based molecular machine, which enables enhanced cancer therapy by combining T-cell immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Man-Sha Wu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xi-Chen Du
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
4
|
Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology 2022; 20:57. [PMID: 35101048 PMCID: PMC8805415 DOI: 10.1186/s12951-022-01240-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/02/2022] [Indexed: 02/07/2023] Open
Abstract
Targeted cancer therapy has become one of the most important medical methods because of the spreading and metastatic nature of cancer. Based on the introduction of AS1411 and its four-chain structure, this paper reviews the research progress in cancer detection and drug delivery systems by modifying AS1411 aptamers based on graphene, mesoporous silica, silver and gold. The application of AS1411 in cancer treatment and drug delivery and the use of AS1411 as a targeting agent for the detection of cancer markers such as nucleoli were summarized from three aspects of active targeting, passive targeting and targeted nucleic acid apharmers. Although AS1411 has been withdrawn from clinical trials, the research surrounding its structural optimization is still very popular. Further progress has been made in the modification of nanoparticles loaded with TCM extracts by AS1411.
Collapse
Affiliation(s)
- Xin Tong
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Jun Ai
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| | - Yong Wang
- College of Chemistry and Environmental Science, College of Geographical Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|