Wollin R, Bruse GW, Jansson PE, Lindberg AA. Definition of the phage G13 receptor as structural domains of trisaccharides in Salmonella and Escherichia coli core oligosaccharides.
J Mol Recognit 1989;
2:37-43. [PMID:
2700071 DOI:
10.1002/jmr.300020106]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interaction between phage G13 and different bacterial and synthetic oligosaccharides has been studied using equilibrium dialysis inhibition. The results, and conformational analysis of the oligosaccharides, make us conclude that the phage G13 carbohydrate receptor is a conformational domain involving three sugar residues. The following trisaccharide elements contain the domain: alpha-D-Galp-(1----3)-[alpha-D-Galp-(1----6)]-alpha-D-Glcp, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)-alpha-D-Manp , and alpha-D-Glcp-(1----3)-[L-gly-alpha-D-man-Hepp-(1----7)]-L-gly-alph a-D- man-Hepp. Thus two structures, either a hexose substituted with alpha-D-glycopyranosyl groups in the 3- and 6-positions, or a heptose substituted with such groups in the 3- and 7-positions are functional G13 binding sites. Such domains are present in several cores of lipopolysaccharides from Salmonella and Escherichia coli species. Some cores, e.g. those from S. typhimurium chemotypes Ra, Rb1 and Rb2, contain two such domains. The identification of two G13 receptor domains within different core saccharides could explain the broad host range of this phage.
Collapse