Tero R, Ujihara T, Urisu T. Lipid bilayer membrane with atomic step structure: supported bilayer on a step-and-terrace TiO2(100) surface.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008;
24:11567-11576. [PMID:
18785710 DOI:
10.1021/la801080f]
[Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The formation of a supported planar lipid bilayer (SPLB) and its morphology on step-and-terrace rutile TiO 2(100) surfaces were investigated by fluorescence microscopy and atomic force microscopy. The TiO 2(100) surfaces consisting of atomic steps and flat terraces were formed on a rutile TiO 2 single-crystal wafer by a wet treatment and annealing under a flow of oxygen. An intact vesicular layer formed on the TiO 2(100) surface when the surface was incubated in a sonicated vesicle suspension under the condition that a full-coverage SPLB forms on SiO 2, as reported in previous studies. However, a full-coverage, continuous, fluid SPLB was obtained on the step-and-terrace TiO 2(100) depending on the lipid concentration, incubation time, and vesicle size. The SPLB on the TiO 2(100) also has step-and-terrace morphology following the substrate structure precisely even though the SPLB is in the fluid phase and an approximately 1-nm-thick water layer exists between the SPLB and the substrate. This membrane distortion on the atomic scale affects the phase-separation structure of a binary bilayer of micrometer order. The interaction energy calculated including DLVO and non-DLVO factors shows that a lipid membrane on the TiO 2(100) gains 20 times more energy than on SiO 2. This specifically strong attraction on TiO 2 makes the fluid SPLB precisely follow the substrate structure of angstrom order.
Collapse