1
|
Belov S, Buneva VN, Nevinsky GA. How human IgGs against myelin basic protein (MBP) recognize oligopeptides and MBP. J Mol Recognit 2017; 30. [PMID: 28470769 DOI: 10.1002/jmr.2637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022]
Abstract
Myelin basic protein (MBP) is a major protein of myelin-proteolipid shell of axons, and it plays an important role in pathogenesis of multiple sclerosis. In the literature, there are no data on how antibodies recognize different protein antigens including MBP. A stepwise increase in ligand complexity was used to estimate the relative contributions of virtually every amino acid residue (AA) of a specific 12-mer LSRFSWGAEGQK oligopeptide corresponding to immunodominant sequence of MBP to the light chains and to intact anti-MBP IgGs from sera of patients with multiple sclerosis. It was shown that the minimal ligands of the light chains of IgGs are many different free AAs (Kd = 0.51-0.016 M), and each free AA interacts with the specific subsite of the light chain intended for recognition of this AA in specific LSRFSW oligopeptide. A gradual transition from Leu to LSRFSWGAEGQK leads to an increase in the affinity from 10-1 to 2.3 × 10-4 M because of additive interactions of the light chain with 6 AAs of this oligopeptide and then the affinity reaches plateau. The contributions of 6 various AAs to the affinity of the oligopeptide are different (Kd , M): 0.71 (S), 0.44 (R), 0.14 (F), 0.17 (S), and 0.62 (W). Affinity of nonspecific oligopeptides to the light chains of IgGs is significantly lower. Intact MBP interacts with both light and heavy chains of IgGs demonstrating 192-fold higher affinity than the specific oligopeptide. It is a first quantitative analysis of the mechanism of proteins recognition by antibodies. The thermodynamic model was constructed to describe the interactions of IgGs with MBP. The data obtained can be very useful for understanding how antibodies against many different proteins can recognize these proteins.
Collapse
Affiliation(s)
- Sergey Belov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Valentina N Buneva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Antibody Binding Selectivity: Alternative Sets of Antigen Residues Entail High-Affinity Recognition. PLoS One 2015; 10:e0143374. [PMID: 26629896 PMCID: PMC4667898 DOI: 10.1371/journal.pone.0143374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022] Open
Abstract
Understanding the relationship between protein sequence and molecular recognition selectivity remains a major challenge. The antibody fragment scFv1F4 recognizes with sub nM affinity a decapeptide (sequence 6TAMFQDPQER15) derived from the N-terminal end of human papilloma virus E6 oncoprotein. Using this decapeptide as antigen, we had previously shown that only the wild type amino-acid or conservative replacements were allowed at positions 9 to 12 and 15 of the peptide, indicating a strong binding selectivity. Nevertheless phenylalanine (F) was equally well tolerated as the wild type glutamine (Q) at position 13, while all other amino acids led to weaker scFv binding. The interfaces of complexes involving either Q or F are expected to diverge, due to the different physico-chemistry of these residues. This would imply that high-affinity binding can be achieved through distinct interfacial geometries. In order to investigate this point, we disrupted the scFv-peptide interface by modifying one or several peptide positions. We then analyzed the effect on binding of amino acid changes at the remaining positions, an altered susceptibility being indicative of an altered role in complex formation. The 23 starting variants analyzed contained replacements whose effects on scFv1F4 binding ranged from minor to drastic. A permutation analysis (effect of replacing each peptide position by all other amino acids except cysteine) was carried out on the 23 variants using the PEPperCHIP® Platform technology. A comparison of their permutation patterns with that of the wild type peptide indicated that starting replacements at position 11, 12 or 13 modified the tolerance to amino-acid changes at the other two positions. The interdependence between the three positions was confirmed by SPR (Biacore® technology). Our data demonstrate that binding selectivity does not preclude the existence of alternative high-affinity recognition modes.
Collapse
|
3
|
Vernet T, Choulier L, Nominé Y, Bellard L, Baltzinger M, Travé G, Altschuh D. Spot peptide arrays and SPR measurements: throughput and quantification in antibody selectivity studies. J Mol Recognit 2015; 28:635-44. [PMID: 25960426 DOI: 10.1002/jmr.2477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 11/07/2022]
Abstract
Antibody selectivity represents a major issue in the development of efficient immuno-therapeutics and detection assays. Its description requires a comparison of the affinities of the antibody for a significant number of antigen variants. In the case of peptide antigens, this task can now be addressed to a significant level of details owing to improvements in spot peptide array technologies. They allow the high-throughput mutational analysis of peptides with, depending on assay design, an evaluation of binding stabilities. Here, we examine the cross-reactive capacity of an antibody fragment using the PEPperCHIP(®) technology platform (PEPperPRINT GmbH, Heidelberg, Germany; >8800 peptides per microarray) combined with the surface plasmon resonance characterization (Biacore(®) technology; GE-Healthcare Biacore, Uppsala, Sweden) of a subset of interactions. ScFv1F4 recognizes the N-terminal end of oncoprotein E6 of human papilloma virus 16. The spot permutation analysis (i.e. each position substituted by all amino acids except cysteine) of the wild type decapeptide (sequence (6)TAMFQDPQER(15)) and of 15 variants thereof defined the optimal epitope and provided a ranking for variant recognition. The SPR affinity measurements mostly validated the ranking of complex stabilities deduced from array data and defined the sensitivity of spot fluorescence intensities, bringing further insight into the conditions for cross-reactivity. Our data demonstrate the importance of throughput and quantification in the assessment of antibody selectivity.
Collapse
Affiliation(s)
- Thierry Vernet
- IBS, Université Grenoble Alpes, F-38044, Grenoble, France.,IBS, CNRS, F-38044, Grenoble, France.,IBS, CEA, F-38044, Grenoble, France
| | - Laurence Choulier
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412, Illkirch, France.,Faculté de Pharmacie, CNRS UMR 7213, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Yves Nominé
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412, Illkirch, France
| | - Laure Bellard
- IBS, Université Grenoble Alpes, F-38044, Grenoble, France.,IBS, CNRS, F-38044, Grenoble, France.,IBS, CEA, F-38044, Grenoble, France
| | - Mireille Baltzinger
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412, Illkirch, France.,IBMC, CNRS UPR 9002 - ARN, Université de Strasbourg, 15 rue René Descartes, 67084, Strasbourg Cedex, France
| | - Gilles Travé
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412, Illkirch, France
| | - Danièle Altschuh
- Biotechnologie et signalisation cellulaire, Université de Strasbourg, CNRS, ESBS, Boulevard Sébastien Brant BP10413, 67412, Illkirch, France
| |
Collapse
|
4
|
Klein FAC, Zeder-Lutz G, Cousido-Siah A, Mitschler A, Katz A, Eberling P, Mandel JL, Podjarny A, Trottier Y. Linear and extended: a common polyglutamine conformation recognized by the three antibodies MW1, 1C2 and 3B5H10. Hum Mol Genet 2013; 22:4215-23. [PMID: 23777629 DOI: 10.1093/hmg/ddt273] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A long-standing pathomechanistic model proposes that the polyglutamine (polyQ)-length-dependent toxicity threshold observed in all polyQ diseases is triggered by a conformational change within the monomer that occurs only above a certain polyQ length. If true, this yet undefined and elusive mutant-specific toxic conformation would constitute a direct therapeutic target. Three anti-polyQ antibodies-MW1, 1C2 and 3B5H10-have been extensively used to probe the conformation of polyQ. The crystal structure of the MW1 epitope reveals a linear, non-pathogenic polyQ. In contrast, although the detailed structure of its epitope is unknown, the 3B5H10 antibody is widely advertised and used as a conformational antibody that recognizes the toxic conformation of expanded polyQ. We solved the crystal structure of the 1C2 antigen-binding domain (1C2-Fab) and performed a direct comparison between the 1C2, MW1 and 3B5H10 structures. The MW1 and 1C2 antibodies have similar sequences and structures, consistent with their binding to short polyQ and their polyQ length-discrimination properties. Unexpectedly, the 3B5H10 antibody also shares striking features with MW1 and 1C2, which prompted us to revisit its binding properties. We show that the 3B5H10 epitope is actually a short, non-pathogenic polyQ. All three antibodies MW1, 1C2 and 3B5H10 interact similarly with polyQ of various lengths, and bind small polyQ epitopes in similar linear and extended conformations. Together with studies published during the recent years, our work argues against the hypothesis that a mutant-specific conformation in monomeric polyQ molecules is the toxic entity responsible for polyQ diseases.
Collapse
Affiliation(s)
- Fabrice A C Klein
- Present address: Computational Chemistry and Biology Group-DETEMA, Facultad de Química, UdelaR, Isidoro de María 1620 piso 3, CC1157, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Longenecker KL, Ruan Q, Fry EH, Saldana SC, Brophy SE, Richardson PL, Tetin SY. Crystal structure and thermodynamic analysis of diagnostic mAb 106.3 complexed with BNP 5-13 (C10A). Proteins 2009; 76:536-47. [DOI: 10.1002/prot.22366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|