1
|
Shalash AO, Azuar A, Madge HYR, Modhiran N, Amarilla AA, Liang B, Khromykh AA, Watterson D, Young PR, Toth I, Skwarczynski M. Detection and Quantification of SARS-CoV-2 Receptor Binding Domain Neutralization by a Sensitive Competitive ELISA Assay. Vaccines (Basel) 2021; 9:vaccines9121493. [PMID: 34960239 PMCID: PMC8705285 DOI: 10.3390/vaccines9121493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
This protocol describes an ELISA-based procedure for accurate measurement of SARS-CoV-2 spike protein-receptor binding domain (RBD) neutralization efficacy by murine immune serum. The procedure requires a small amount of S-protein/RBD and angiotensin converting enzyme-2 (ACE2). A high-throughput, simple ELISA technique is employed. Plate-coated-RBDs are allowed to interact with the serum, then soluble ACE2 is added, followed by secondary antibodies and substrate. The key steps in this procedure include (1) serum heat treatment to prevent non-specific interactions, (2) proper use of blank controls to detect side reactions and eliminate secondary antibody cross-reactivity, (3) the addition of an optimal amount of saturating ACE2 to maximize sensitivity and prevent non-competitive co-occurrence of RBD-ACE2 binding and neutralization, and (4) mechanistically derived neutralization calculation using a calibration curve. Even manually, the protocol can be completed in 16 h for >30 serum samples; this includes the 7.5 h of incubation time. This automatable, high-throughput, competitive ELISA assay can screen a large number of sera, and does not require sterile conditions or special containment measures, as live viruses are not employed. In comparison to the ‘gold standard’ assays (virus neutralization titers (VNT) or plaque reduction neutralization titers (PRNT)), which are laborious and time consuming and require special containment measures due to their use of live viruses. This simple, alternative neutralization efficacy assay can be a great asset for initial vaccine development stages. The assay successfully passed conventional validation parameters (sensitivity, specificity, precision, and accuracy) and results with moderately neutralizing murine sera correlated with VNT assay results (R2 = 0.975, n = 25), demonstrating high sensitivity.
Collapse
Affiliation(s)
- Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
| | - Harrison Y. R. Madge
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (A.O.S.); (A.A.); (H.Y.R.M.); (N.M.); (A.A.A.); (B.L.); (A.A.K.); (D.W.); (P.R.Y.); (I.T.)
- Correspondence:
| |
Collapse
|
2
|
In Silico Modeling as a Perspective in Developing Potential Vaccine Candidates and Therapeutics for COVID-19. COATINGS 2021. [DOI: 10.3390/coatings11111273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential of computational models to identify new therapeutics and repurpose existing drugs has gained significance in recent times. The current ‘COVID-19’ pandemic caused by the new SARS CoV2 virus has affected over 200 million people and caused over 4 million deaths. The enormity and the consequences of this viral infection have fueled the research community to identify drugs or vaccines through a relatively expeditious process. The availability of high-throughput datasets has cultivated new strategies for drug development and can provide the foundation towards effective therapy options. Molecular modeling methods using structure-based or computer-aided virtual screening can potentially be employed as research guides to identify novel antiviral agents. This review focuses on in-silico modeling of the potential therapeutic candidates against SARS CoVs, in addition to strategies for vaccine design. Here, we particularly focus on the recently published SARS CoV main protease (Mpro) active site, the RNA-dependent RNA polymerase (RdRp) of SARS CoV2, and the spike S-protein as potential targets for vaccine development. This review can offer future perspectives for further research and the development of COVID-19 therapies via the design of new drug candidates and multi-epitopic vaccines and through the repurposing of either approved drugs or drugs under clinical trial.
Collapse
|
3
|
Štambuk N, Konjevoda P, Pavan J. Antisense Peptide Technology for Diagnostic Tests and Bioengineering Research. Int J Mol Sci 2021; 22:9106. [PMID: 34502016 PMCID: PMC8431130 DOI: 10.3390/ijms22179106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Antisense peptide technology (APT) is based on a useful heuristic algorithm for rational peptide design. It was deduced from empirical observations that peptides consisting of complementary (sense and antisense) amino acids interact with higher probability and affinity than the randomly selected ones. This phenomenon is closely related to the structure of the standard genetic code table, and at the same time, is unrelated to the direction of its codon sequence translation. The concept of complementary peptide interaction is discussed, and its possible applications to diagnostic tests and bioengineering research are summarized. Problems and difficulties that may arise using APT are discussed, and possible solutions are proposed. The methodology was tested on the example of SARS-CoV-2. It is shown that the CABS-dock server accurately predicts the binding of antisense peptides to the SARS-CoV-2 receptor binding domain without requiring predefinition of the binding site. It is concluded that the benefits of APT outweigh the costs of random peptide screening and could lead to considerable savings in time and resources, especially if combined with other computational and immunochemical methods.
Collapse
Affiliation(s)
- Nikola Štambuk
- Center for Nuclear Magnetic Resonance, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Paško Konjevoda
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Josip Pavan
- Department of Ophthalmology, University Hospital Dubrava, Avenija Gojka Šuška 6, HR-10000 Zagreb, Croatia
| |
Collapse
|
4
|
Madhavan M, AlOmair LA, Ks D, Mustafa S. Exploring peptide studies related to SARS-CoV to accelerate the development of novel therapeutic and prophylactic solutions against COVID-19. J Infect Public Health 2021; 14:1106-1119. [PMID: 34280732 PMCID: PMC8253661 DOI: 10.1016/j.jiph.2021.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/18/2023] Open
Abstract
Recent advances in peptide research revolutionized therapeutic discoveries for various infectious diseases. In view of the ongoing threat of the COVID-19 pandemic, there is an urgent need to develop potential therapeutic options. Intense and accomplishing research is being carried out to develop broad-spectrum vaccines and treatment options for corona viruses, due to the risk of recurrent infection by the existing strains or pandemic outbreaks by new mutant strains. Developing a novel medicine is costly and time consuming, which increases the value of repurposing existing therapies. Since, SARS-CoV-2 shares significant genomic homology with SARS-CoV, we have summarized various peptides identified against SARS-CoV using in silico and molecular studies and also the peptides effective against SARS-CoV-2. Dissecting the molecular mechanisms underlying viral infection could yield fundamental insights in the discovery of new antiviral agents, targeting viral proteins or host factors. We postulate that these peptides can serve as effective components for therapeutic options against SARS-CoV-2, supporting clinical scientists globally in selectively identifying and testing the therapeutic and prophylactic agents for COVID-19 treatment. In addition, we also summarized the latest updates on peptide therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram, Kerala, India.
| | - Lamya A AlOmair
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Deepthi Ks
- Department of Microbiology, Government College for Women, Thiruvananthapuram, Kerala, India.
| | - Sabeena Mustafa
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Li HM, Dong ZP, Wang QY, Liu LX, Li BX, Ma XN, Lin MS, Lu T, Wang Y. De Novo Computational Design for Development of a Peptide Ligand Oriented to VEGFR-3 with High Affinity and Long Circulation. Mol Pharm 2017; 14:2236-2244. [DOI: 10.1021/acs.molpharmaceut.7b00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hong M. Li
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Zhi P. Dong
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Qi Y. Wang
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Li X. Liu
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Bing X. Li
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao N. Ma
- Cellular and Molecular Biology Center of China Pharmaceutical University, Nanjing 211198, China
| | - Ming S. Lin
- TA Instruments-Waters LLC, Shanghai 200233, China
| | - Tao Lu
- State
Key Laboratory of Natural Medicines, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Wang
- Key
Laboratory of Biomedical Functional Materials, School of Sciences, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Rational design and functional evolution of targeted peptides for bioanalytical applications. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0186-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Miller AD. Sense–antisense (complementary) peptide interactions and the proteomic code; potential opportunities in biology and pharmaceutical science. Expert Opin Biol Ther 2015; 15:245-67. [DOI: 10.1517/14712598.2015.983069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Sunwoo HH, Palaniyappan A, Ganguly A, Bhatnagar PK, Das D, El-Kadi AOS, Suresh MR. Quantitative and sensitive detection of the SARS-CoV spike protein using bispecific monoclonal antibody-based enzyme-linked immunoassay. J Virol Methods 2012; 187:72-8. [PMID: 22995576 PMCID: PMC7112864 DOI: 10.1016/j.jviromet.2012.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/21/2012] [Accepted: 09/05/2012] [Indexed: 12/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein is known to mediate receptor interaction and immune recognition and thus it is considered as a major target for vaccine design. The spike protein plays an important role in virus entry, virus receptor interactions, and virus tropism. Sensitive diagnosis of SARS is essential for the control of the disease in humans. Recombinant SARS-CoV S1 antigen was produced and purified for the development of monoclonal and bi-specific monoclonal antibodies. The hybridomas secreting anti-S1 antibodies, F26G18 and P136.8D12, were fused respectively with the YP4 hybridoma to generate quadromas. The sandwich ELISA was formed by using F26G18 as a coating antibody and biotinylated F26G18 as a detection antibody with a detection limit of 0.037 μg/ml (p < 0.02). The same detection limit was found with P136.8D12 as a coating antibody and biotinylated F26G18 as a detection antibody. The sensitivity was improved (detection limit of 0.019 μg/ml), however, when using bi-specific monoclonal antibody (F157) as the detection antibody. In conclusion, the method described in this study allows sensitive detection of a recombinant SARS spike protein by sandwich ELISA with bi-specific monoclonal antibody and could be used for the diagnosis of patients suspected with SARS.
Collapse
Affiliation(s)
- Hoon H Sunwoo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, 11361-87 Avenue, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
9
|
Huang Y, Zhao R, Fu Y, Zhang Q, Xiong S, Li L, Zhou R, Liu G, Chen Y. Highly Specific Targeting and Imaging of Live Cancer Cells by Using a Peptide Probe Developed from Rationally Designed Peptides. Chembiochem 2011; 12:1209-15. [DOI: 10.1002/cbic.201100031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Indexed: 02/06/2023]
|
10
|
Gilch S, Schätzl HM. Aptamers against prion proteins and prions. Cell Mol Life Sci 2009; 66:2445-55. [PMID: 19396399 PMCID: PMC11115877 DOI: 10.1007/s00018-009-0031-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/01/2009] [Accepted: 04/03/2009] [Indexed: 12/19/2022]
Abstract
Prion diseases are fatal neurodegenerative and infectious disorders of humans and animals, characterized by structural transition of the host-encoded cellular prion protein (PrP(c)) into the aberrantly folded pathologic isoform PrP(Sc). RNA, DNA or peptide aptamers are classes of molecules which can be selected from complex combinatorial libraries for high affinity and specific binding to prion proteins and which might therefore be useful in diagnosis and therapy of prion diseases. Nucleic acid aptamers, which can be chemically synthesized, stabilized and immobilized, appear more suitable for diagnostic purposes, allowing use of PrP(Sc) as selection target. Peptide aptamers facilitate appropriate intracellular expression, targeting and re-routing without losing their binding properties to PrP, a requirement for potential therapeutic gene transfer experiments in vivo. Elucidation of structural properties of peptide aptamers might be used as basis for rational drug design, providing another attractive application of peptide aptamers in the search for effective anti-prion strategies.
Collapse
Affiliation(s)
- Sabine Gilch
- Institute of Virology, Technische Universität München, Trogerstr. 30, 81675 Munich, Germany
| | - Hermann M. Schätzl
- Institute of Virology, Technische Universität München, Trogerstr. 30, 81675 Munich, Germany
| |
Collapse
|