1
|
Lodewijk I, Dueñas M, Paramio JM, Rubio C. CD44v6, STn & O-GD2: promising tumor associated antigens paving the way for new targeted cancer therapies. Front Immunol 2023; 14:1272681. [PMID: 37854601 PMCID: PMC10579806 DOI: 10.3389/fimmu.2023.1272681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Targeted therapies are the state of the art in oncology today, and every year new Tumor-associated antigens (TAAs) are developed for preclinical research and clinical trials, but few of them really change the therapeutic scenario. Difficulties, either to find antigens that are solely expressed in tumors or the generation of good binders to these antigens, represent a major bottleneck. Specialized cellular mechanisms, such as differential splicing and glycosylation processes, are a good source of neo-antigen expression. Changes in these processes generate surface proteins that, instead of showing decreased or increased antigen expression driven by enhanced mRNA processing, are aberrant in nature and therefore more specific targets to elicit a precise anti-tumor therapy. Here, we present promising TAAs demonstrated to be potential targets for cancer monitoring, targeted therapy and the generation of new immunotherapy tools, such as recombinant antibodies and chimeric antigen receptor (CAR) T cell (CAR-T) or Chimeric Antigen Receptor-Engineered Natural Killer (CAR-NK) for specific tumor killing, in a wide variety of tumor types. Specifically, this review is a detailed update on TAAs CD44v6, STn and O-GD2, describing their origin as well as their current and potential use as disease biomarker and therapeutic target in a diversity of tumor types.
Collapse
Affiliation(s)
- Iris Lodewijk
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Jesus M. Paramio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| |
Collapse
|
2
|
Weber J, Djurberg K, Lundsten Salomonsson S, Kamprath M, Hoehne A, Westin H, Vergara F, Bondza S. Modelling ligand depletion for simultaneous affinity and binding site quantification on cells and tissue. Sci Rep 2023; 13:10031. [PMID: 37340068 DOI: 10.1038/s41598-023-37015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
The quantification of the number of targets in biological systems is an important parameter to assess the suitability of surface markers as targets for drugs, drug delivery and medical imaging. Likewise, quantifying the interaction with the target in terms of affinity and binding kinetics is essential during drug development. Commonly used approaches to quantify membrane antigens on live cells are based on manual saturation techniques that are labour-intensive, require careful calibration of the generated signal and do not quantify the binding rates. Here, we present how measuring interactions in real-time on live cells and tissue under ligand depletion conditions can be used to simultaneously quantify the kinetic binding parameters as well as the number of available binding sites in a biological system. Suitable assay design was explored with simulated data and feasibility of the method verified with experimental data for exemplary low molecular weight peptide and antibody radiotracers as well as fluorescent antibodies. In addition to revealing the number of accessible target sites and improving the accuracy of binding kinetics and affinities, the presented method does not require knowledge about the absolute signal generated per ligand molecule. This enables a simplified workflow for use with both radioligands and fluorescent binders.
Collapse
Affiliation(s)
| | | | - Sara Lundsten Salomonsson
- Ridgeview Instruments AB, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | - Sina Bondza
- Ridgeview Instruments AB, Uppsala, Sweden.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Dong T, Han C, Liu X, Wang Z, Wang Y, Kang Q, Wang P, Zhou F. Live Cells versus Fixated Cells: Kinetic Measurements of Biomolecular Interactions with the LigandTracer Method and Surface Plasmon Resonance Microscopy. Mol Pharm 2023; 20:2094-2104. [PMID: 36939457 DOI: 10.1021/acs.molpharmaceut.2c01047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Cell-based kinetic studies of ligand or candidate drug binding to membrane proteins have produced affinity and kinetic values that are different from measurements using purified proteins. However, ligand binding to fixated cells whose membrane constituents (e.g., proteins and their glycosylated forms) are partially connected by a cross-linking reagent has not been compared to that to live cells. Under the same experimental conditions for the LigandTracer method, we measured the interactions of fluorophore-labeled lectins and antibody molecules with glycans at HFF cells and the human epithelial growth receptor 2 at SKBR3 cells, respectively. In conjunction with surface plasmon resonance microscopy, the effects of labels and cell/sub-cell heterogeneity on binding kinetics were investigated. Our results revealed that, for cell constituents whose structures and functions are not closely dependent on cell viability, the ligand binding kinetics at fixated cells is only slightly different from that at live cells. The altered kinetics is explained on the basis of a less mobile receptor confined in a local environment created by partially interconnected protein molecules. We show that cell/sub-cell heterogeneity and labels on the ligands can alter the binding reaction more significantly. Thus, fixating cells not only simplifies experimental procedures for drug screening and renders assays more robust but also provides reliable kinetic information about drug binding to cell constituents whose structures are not changed by chemical fixation.
Collapse
Affiliation(s)
- Tianbao Dong
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Xin Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Zhichao Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Yanhui Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong 250022, P. R. China
| |
Collapse
|
4
|
Lumen D, Vugts D, Chomet M, Imlimthan S, Sarparanta M, Vos R, Schreurs M, Verlaan M, Lang PA, Hippeläinen E, Beaino W, Windhorst AD, Airaksinen AJ. Pretargeted PET Imaging with a TCO-Conjugated Anti-CD44v6 Chimeric mAb U36 and [ 89Zr]Zr-DFO-PEG 5-Tz. Bioconjug Chem 2022; 33:956-968. [PMID: 35442642 PMCID: PMC9121349 DOI: 10.1021/acs.bioconjchem.2c00164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The recent advances
in the production of engineered antibodies
have facilitated the development and application of tailored, target-specific
antibodies. Positron emission tomography (PET) of these antibody-based
drug candidates can help to better understand their in vivo behavior. In this study, we report an in vivo proof-of-concept
pretargeted immuno-PET study where we compare a pretargeting vs targeted
approach using a new 89Zr-labeled tetrazine as a bio-orthogonal
ligand in an inverse electron demand Diels–Alder (IEDDA) in vivo click reaction. A CD44v6-selective chimeric monoclonal
U36 was selected as the targeting antibody because it has potential
in immuno-PET imaging of head-and-neck squamous cell carcinoma (HNSCC).
Zirconium-89 (t1/2 = 78.41 h) was selected
as the radionuclide of choice to be able to make a head-to-head comparison
of the pretargeted and targeted approaches. [89Zr]Zr-DFO-PEG5-Tz ([89Zr]Zr-3) was synthesized and
used in pretargeted PET imaging of HNSCC xenografts (VU-SCC-OE) at
24 and 48 h after administration of a trans-cyclooctene
(TCO)-functionalized U36. The pretargeted approach resulted in lower
absolute tumor uptake than the targeted approach (1.5 ± 0.2 vs
17.1 ± 3.0% ID/g at 72 h p.i. U36) but with comparable tumor-to-non-target
tissue ratios and significantly lower absorbed doses. In conclusion,
anti-CD44v6 monoclonal antibody U36 was successfully used for 89Zr-immuno-PET imaging of HNSCC xenograft tumors using both
a targeted and pretargeted approach. The results not only support
the utility of the pretargeted approach in immuno-PET imaging but
also demonstrate the challenges in achieving optimal in vivo IEDDA reaction efficiencies in relation to antibody pharmacokinetics.
Collapse
Affiliation(s)
- Dave Lumen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Danielle Vugts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marion Chomet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Surachet Imlimthan
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mirkka Sarparanta
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Ricardo Vos
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Maxime Schreurs
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Mariska Verlaan
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Pauline A Lang
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Eero Hippeläinen
- HUS Medical Imaging Center, Clinical Physiology and Nuclear Medicine, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland
| | - Wissam Beaino
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Albert D Windhorst
- Amsterdam UMC, Vrije Universiteit Amsterdam, Radiology & Nuclear Medicine, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Anu J Airaksinen
- Department of Chemistry, Radiochemistry, University of Helsinki, FI-00014 Helsinki, Finland.,Turku PET Centre, Department of Chemistry, University of Turku, 20520 Turku, Finland
| |
Collapse
|
5
|
Haylock AK, Nilvebrant J, Mortensen A, Velikyan I, Nestor M, Falk R. Generation and evaluation of antibody agents for molecular imaging of CD44v6-expressing cancers. Oncotarget 2017; 8:65152-65170. [PMID: 29029420 PMCID: PMC5630320 DOI: 10.18632/oncotarget.17996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/26/2017] [Indexed: 11/25/2022] Open
Abstract
AIM The aim of this study was to generate and characterize scFv antibodies directed to human CD44v6, as well as to radiolabel and evaluate top candidates in vitro and in vivo for their potential use in CD44v6-targeted molecular imaging in cancer patients. MATERIALS AND METHODS Phage display selections were used to isolate CD44v6-specific scFvs. A chain shuffling strategy was employed for affinity maturation based on a set of CD44v6-specific first-generation clones. Two second-generation scFv clones were then chosen for labeling with 111In or 125I and assessed for CD44v6-specific binding on cultured tumor cells. In vivo uptake and distribution was evaluated in tumor-bearing mice using a dual tumor model. Finally, a proof-of-concept small animal PET-CT study was performed on one of the candidates labeled with 124I. RESULTS Two affinity-matured clones, CD44v6-scFv-A11 and CD44v6-scFv-H12, displayed promising binding kinetics. Seven out of eight radiolabeled conjugates demonstrated CD44v6-specific binding. In vivo studies on selected candidates demonstrated very advantageous tumor-to-organ ratios, in particular for iodinated conjugates, where 125I-labeled scFvs exhibited favorable kinetics and tumor-to-blood ratios above five already at 24 hours p.i.. The small animal PET-CT study using 124I-labeled CD44v6-scFv-H12 was in line with the biodistribution data, clearly visualizing the high CD44v6-expressing tumor. CONCLUSION The single chain fragments, CD44v6-scFv-A11 and CD44v6-scFv-H12 specifically bind to CD44v6, and the radiolabeled counterparts provide high tumor-to-blood ratios and fast clearance from organs and blood. We conclude that radioiodinated CD44v6-scFv-A11 and CD44v6-scFv-H12 possess features highly suitable for stringent molecular imaging.
Collapse
Affiliation(s)
- Anna-Karin Haylock
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Johan Nilvebrant
- Division of Protein Technology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Anja Mortensen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Irina Velikyan
- Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ronny Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
CD44v6-Targeted Imaging of Head and Neck Squamous Cell Carcinoma: Antibody-Based Approaches. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:2709547. [PMID: 29097914 PMCID: PMC5612744 DOI: 10.1155/2017/2709547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/23/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a common and severe cancer with low survival rate in advanced stages. Noninvasive imaging of prognostic and therapeutic biomarkers could provide valuable information for planning and monitoring of the different therapy options. Thus, there is a major interest in development of new tracers towards cancer-specific molecular targets to improve diagnostic imaging and treatment. CD44v6, an oncogenic variant of the cell surface molecule CD44, is a promising molecular target since it exhibits a unique expression pattern in HNSCC and is associated with drug- and radio-resistance. In this review we summarize results from preclinical and clinical investigations of radiolabeled anti-CD44v6 antibody-based tracers: full-length antibodies, Fab, F(ab′)2 fragments, and scFvs with particular focus on the engineering of various antibody formats and choice of radiolabel for the use as molecular imaging agents in HNSCC. We conclude that the current evidence points to CD44v6 imaging being a promising approach for providing more specific and sensitive diagnostic tools, leading to customized treatment decisions and functional diagnosis. Improved imaging tools hold promise to enable more effective treatment for head and neck cancer patients.
Collapse
|
7
|
A real-time in vitro assay as a potential predictor of in vivo tumor imaging properties. Nucl Med Biol 2015; 43:12-18. [PMID: 26702782 DOI: 10.1016/j.nucmedbio.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Selective tumor targeting strategies based on cell surface molecules enable new personalized diagnosis and treatments, potentially lowering adverse effects and increasing efficacy. Radio-immunotargeting generally relies on a molecule binding to a cancer-specific target. It is therefore important to understand the properties of molecular interactions in their working environment and how to translate these properties measured in vitro into the in vivo molecular imaging situation. METHODS Time resolved interaction analysis in vitro was compared with a corresponding in vivo xenograft mouse model. The antibody fragment AbD15179 was labeled with (125)I or (111)In, and analyzed on cell lines with differing CD44v6 expression in vitro, and in a dual tumor xenograft model derived from the same cell lines. In vitro LigandTracer measurements were analyzed with TraceDrawer and Interaction Map. Conjugate sensitivity, kinetics, and signal-to-background ratios were assessed for both tumor cells in vitro and xenograft tumors in vivo. RESULTS In vitro results revealed a general biphasic appearance of a high- and a low-affinity interaction event. The (111)In-labeled fragment displayed the largest proportion of the high-affinity interaction with increased sensitivity and retention compared to (125)I-Fab. In vivo results were in agreement with in vitro data, with increased retention, higher sensitivity and better contrast for the (111)In-labeled fragment compared to (125)I. CONCLUSIONS Time resolved binding characteristics measured in vitro largely matched the in vivo performance for the conjugates, which is promising for future studies. In vitro time-resolved LigandTracer assays are efficient, rapid, and in this study shown to be able to predict in vivo outcomes. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE Further studies are needed to confirm these findings, but the method is promising considering the ethical need to reduce the use of laboratory animals, as well as reducing costs for the development of tumor targeting compounds in the future.
Collapse
|
8
|
Banerjee S, Pillai MRA, Knapp FFR. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev 2015; 115:2934-74. [PMID: 25865818 DOI: 10.1021/cr500171e] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharmila Banerjee
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| | - M R A Pillai
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| | - F F Russ Knapp
- Radiopharmaceuticals Chemistry Section, Bhabha Atomic Research Centre (BARC), Mumbai 400 085, India.,Molecular Group of Companies, Puthuvype, Ernakulam, Kerala 682 508, India.,Medical Radioisotope Program, Oak Ridge National Laboratory (ORNL), P.O. Box 2008, 1 Bethel Valley Road, Oak Ridge, Tennessee 37830-6229, United States
| |
Collapse
|
9
|
Automated functional characterization of radiolabeled antibodies: a time-resolved approach. Nucl Med Commun 2015; 35:767-76. [PMID: 24709981 DOI: 10.1097/mnm.0000000000000117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The number of radiolabeled monoclonal antibodies (mAbs) used for medical imaging and cancer therapy is increasing. The required chemical modification for attaching a radioactive label and all associated treatment may lead to a damaged mAb subpopulation. This paper describes a novel method, concentration through kinetics (CTK), for rapid assessment of the concentration of immunoreactive mAb and the specific radioactivity, based on monitoring binding kinetics. METHODS The interaction of radiolabeled mAb with either the antigen or a general mAb binder such as Protein A was monitored in real time using the instrument LigandTracer. As the curvature of the binding trace has a distinct shape based on the interaction kinetics and concentration of the functional mAb, the immunoreactive mAb concentration could be calculated through reverse kinetic fitting of the binding curves, using software developed for this project. The specific activity, describing the degree of radioactive labeling, was determined through the use of calibrated signal intensities. RESULTS The performance of the CTK assay was evaluated on the basis of various mAb-based interaction systems and assay formats, and it was shown that the assay can provide accurate and repeatable results for immunoreactive concentration and specific activity, with both accuracy and relative SD values below 15%. CONCLUSION By applying reverse kinetics on real-time binding traces it is possible to estimate the functional concentration and specific activity of radiolabeled mAb. The CTK assay may in the future be included as a complement to current quality assessment methods of radiolabeled mAbs.
Collapse
|
10
|
Galkina OL, Ivanov VK, Agafonov AV, Seisenbaeva GA, Kessler VG. Cellulose nanofiber–titania nanocomposites as potential drug delivery systems for dermal applications. J Mater Chem B 2015; 3:1688-1698. [DOI: 10.1039/c4tb01823k] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanocomposites with potential for dermal drug delivery have been developed using nanotitania chemically grafted onto nanocellulose as an active ingredient for enhanced uptake and controlled release of model drug loads.
Collapse
Affiliation(s)
- O. L. Galkina
- Institute of Solution Chemistry of the Russian Academy of Sciences
- Ivanovo, Russia
- Department of Chemistry and Biotechnology
- Swedish University of Agricultural Sciences
- 750 07 Uppsala, Sweden
| | - V. K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry
- Moscow, Russia
- National Research Tomsk State University
- Tomsk, Russia
| | - A. V. Agafonov
- Institute of Solution Chemistry of the Russian Academy of Sciences
- Ivanovo, Russia
| | - G. A. Seisenbaeva
- Department of Chemistry and Biotechnology
- Swedish University of Agricultural Sciences
- 750 07 Uppsala, Sweden
- CaptiGel AB
- 75450 Uppsala, Sweden
| | - V. G. Kessler
- Department of Chemistry and Biotechnology
- Swedish University of Agricultural Sciences
- 750 07 Uppsala, Sweden
- CaptiGel AB
- 75450 Uppsala, Sweden
| |
Collapse
|
11
|
Haylock AK, Spiegelberg D, Nilvebrant J, Sandström K, Nestor M. In vivo characterization of the novel CD44v6-targeting Fab fragment AbD15179 for molecular imaging of squamous cell carcinoma: a dual-isotope study. EJNMMI Res 2014; 4:11. [PMID: 24598405 PMCID: PMC3975705 DOI: 10.1186/2191-219x-4-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with squamous cell carcinoma in the head and neck region (HNSCC) offer a diagnostic challenge due to difficulties to detect small tumours and metastases. Imaging methods available are not sufficient, and radio-immunodiagnostics could increase specificity and sensitivity of diagnostics. The objective of this study was to evaluate, for the first time, the in vivo properties of the radiolabelled CD44v6-targeting fragment AbD15179 and to assess its utility as a targeting agent for radio-immunodiagnostics of CD44v6-expressing tumours. METHODS The fully human CD44v6-targeting Fab fragment AbD15179 was labelled with 111In or 125I, as models for radionuclides suitable for imaging with SPECT or PET. Species specificity, antigen specificity and internalization properties were first assessed in vitro. In vivo specificity and biodistribution were then evaluated in tumour-bearing mice using a dual-tumour and dual-isotope setup. RESULTS Both species-specific and antigen-specific binding of the conjugates were demonstrated in vitro, with no detectable internalization. The in vivo studies demonstrated specific tumour binding and favourable tumour targeting properties for both conjugates, albeit with higher tumour uptake, slower tumour dissociation, higher tumour-to-blood ratio and higher CD44v6 sensitivity for the 111In-labelled fragment. In contrast, the 125I-Fab demonstrated more favourable tumour-to-organ ratios for liver, spleen and kidneys. CONCLUSIONS We conclude that AbD15179 efficiently targets CD44v6-expressing squamous cell carcinoma xenografts, and particularly, the 111In-Fab displayed high and specific tumour uptake. CD44v6 emerges as a suitable target for radio-immunodiagnostics, and a fully human antibody fragment such as AbD15179 can enable further clinical imaging studies.
Collapse
Affiliation(s)
- Anna-Karin Haylock
- Unit of Otolaryngology and Head & Neck Surgery, Department of Surgical Sciences, Uppsala University, Akademiska Sjukhuset, Uppsala SE-751 85, Sweden.
| | | | | | | | | |
Collapse
|
12
|
Dubois L, Andersson K, Asplund A, Björkelund H. Evaluating real-time immunohistochemistry on multiple tissue samples, multiple targets and multiple antibody labeling methods. BMC Res Notes 2013; 6:542. [PMID: 24350799 PMCID: PMC3878317 DOI: 10.1186/1756-0500-6-542] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/16/2013] [Indexed: 12/16/2022] Open
Abstract
Background Immunohistochemistry (IHC) is a well-established method for the analysis of protein expression in tissue specimens and constitutes one of the most common methods performed in pathology laboratories worldwide. However, IHC is a multi-layered method based on subjective estimations and differences in staining and interpretation has been observed between facilities, suggesting that the analysis of proteins on tissue would benefit from protocol optimization and standardization. Here we describe how the emerging and operator independent tool of real-time immunohistochemistry (RT-IHC) reveals a time resolved description of antibody interacting with target protein in formalin fixed paraffin embedded tissue. The aim was to understand the technical aspects of RT-IHC, regarding generalization of the concept and to what extent it can be considered a quantitative method. Results Three different antibodies labeled with fluorescent or radioactive labels were applied on nine different tissue samples from either human or mouse, and the results for all RT-IHC analyses distinctly show that the method is generally applicable. The collected binding curves showed that the majority of the antibody-antigen interactions did not reach equilibrium within 3 hours, suggesting that standardized protocols for immunohistochemistry are sometimes inadequately optimized. The impact of tissue size and thickness as well as the position of the section on the glass petri dish was assessed in order for practical details to be further elucidated for this emerging technique. Size and location was found to affect signal magnitude to a larger extent than thickness, but the signal from all measurements were still sufficient to trace the curvature. The curvature, representing the kinetics of the interaction, was independent of thickness, size and position and may be a promising parameter for the evaluation of e.g. biopsy sections of different sizes. Conclusions It was found that RT-IHC can be used for the evaluation of a number of different antibodies and tissue types, rendering it a general method. We believe that by following interactions over time during the development of conventional IHC assays, it becomes possible to better understand the different processes applied in conventional IHC, leading to optimized assay protocols with improved sensitivity.
Collapse
Affiliation(s)
| | | | | | - Hanna Björkelund
- Department of Radiology, Oncology, and Radiation Sciences; Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
13
|
Xu B, Varasteh Z, Orlova A, Andersson K, Larhammar D, Björkelund H. Detecting ligand interactions with G protein-coupled receptors in real-time on living cells. Biochem Biophys Res Commun 2013; 441:820-4. [PMID: 24211197 DOI: 10.1016/j.bbrc.2013.10.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large group of receptors of great biological and clinical relevance. Despite this, the tools for a detailed analysis of ligand-GPCR interactions are limited. The aim of this paper was to demonstrate how ligand binding to GPCRs can be followed in real-time on living cells. This was conducted using two model systems, the radiolabeled porcine peptide YY (pPYY) interacting with transfected human Y2 receptor (hY2R) and the bombesin antagonist RM26 binding to the naturally expressed gastrin-releasing peptide receptor (GRPR). By following the interaction over time, the affinity and kinetic properties such as association and dissociation rate were obtained. Additionally, data were analyzed using the Interaction Map method, which can evaluate a real-time binding curve and present the number of parallel interactions contributing to the curve. It was found that pPYY binds very slowly with an estimated time to equilibrium of approximately 12h. This may be problematic in standard end-point assays where equilibrium is required. The RM26 binding showed signs of heterogeneity, observed as two parallel interactions with unique kinetic properties. In conclusion, measuring binding in real-time using living cells opens up for a better understanding of ligand interactions with GPCRs.
Collapse
Affiliation(s)
- Bo Xu
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Husargatan 2, 751 24 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
14
|
Choice of labeling and cell line influences interactions between the Fab fragment AbD15179 and its target antigen CD44v6. Nucl Med Biol 2013; 41:140-7. [PMID: 24290808 DOI: 10.1016/j.nucmedbio.2013.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/11/2013] [Accepted: 10/22/2013] [Indexed: 01/07/2023]
Abstract
Medical imaging by use of immunotargeting generally relies on a labeled molecule binding to a specific target on the cell surface. It is important to utilize both cell-based and time-resolved binding assays in order to understand the properties of such molecular interactions in a relevant setting. In this report we describe the detailed characterization of the interaction properties for AbD15179, a promising CD44v6-targeting antibody fragment for radio-immunotargeting. Influence of labeling and cell-line model on the protein interaction kinetics was assessed using three different labeling approaches ((111)In, (125)I and FITC) on three different squamous carcinoma cell lines. Interactions were measured using time-resolved assays on living cells, and further analyzed with Interaction Map®. Results demonstrated a general biphasic appearance of a high- and a low-affinity binding event in all cases. The relative contribution from these two interactions differed between conjugates. For (125)I-Fab, the population of low-affinity binders could be significantly increased by extending the chloramine T exposure during labeling, whereas the (111)In-labeling predominantly resulted in a high-affinity interaction. Interactions were also shown to be cell line dependent, with e.g. SCC-25 cells generally mediating a faster dissociation of conjugates compared to the other cell lines. In conclusion, we report both cell line dependent and labeling associated variations in interaction kinetics for AbD15179 binding to CD44v6. This has implications for cell-based kinetic assays and applications based on labeled conjugates in general, as well as in a clinical setting, where each individual tumor may create different kinetic profiles for the same conjugate.
Collapse
|
15
|
Ekerljung L, Wållberg H, Sohrabian A, Andersson K, Friedman M, Frejd FY, Ståhl S, Gedda L. Generation and evaluation of bispecific affibody molecules for simultaneous targeting of EGFR and HER2. Bioconjug Chem 2012; 23:1802-11. [PMID: 22882002 DOI: 10.1021/bc3000645] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Coexpression of several ErbB receptors has been found in many cancers and has been linked with increased aggressiveness of tumors and a worse patient prognosis. This makes the simultaneous targeting of two surface receptors by using bispecific constructs an increasingly appreciated strategy. Here, we have generated six such bispecific targeting proteins, each comprising two monomeric affibody molecules with specific binding to either of the two human epidermal growth factor receptors, EGFR and HER2, respectively. The bispecific constructs were designed with (i) alternative positioning (N- or C-terminal) of the different affibody molecules, (ii) two alternative peptide linkers (Gly(4)Ser)(3) or (Ser(4)Gly)(3), and (iii) affibody molecules with different affinity (nanomolar or picomolar) for HER2. Using both Biacore technology and cell binding assays, it was demonstrated that all six constructs could bind simultaneously to both their target proteins. N-terminal positioning of the inherent monomeric affibody molecules was favorable to promote the binding to the respective target. Interestingly, bispecific constructs containing the novel (Ser(4)Gly)(3) linker displayed a higher affinity in cell binding, as compared to constructs containing the more conventional linker, (Gly(4)Ser)(3). It could further be concluded that bispecific constructs (but not the monomeric affibody molecules) induced dimer formation and phosphorylation of EGFR in SKBR3 cells, which express fairly high levels of both receptors. It was also investigated whether the bispecific binding would influence cell growth or sensitize cells for ionizing radiation, but no such effects were observed.
Collapse
Affiliation(s)
- Lina Ekerljung
- Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Zhang Y, Hong H, Cai W. PET tracers based on Zirconium-89. Curr Radiopharm 2012; 4:131-9. [PMID: 22191652 DOI: 10.2174/1874471011104020131] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/02/2011] [Accepted: 02/05/2011] [Indexed: 01/27/2023]
Abstract
Positron emission tomography (PET) imaging with radiolabeled monoclonal antibodies has always been a dynamic area in molecular imaging. With decay half-life (3.3 d) well matched to the circulation half-lives of antibodies (usually on the order of days), (89)Zr has been extensively studied over the last decade. This review article will give a brief overview on (89)Zr isotope production, the radiochemistry generally used for (89)Zr-labeling, and the PET tracers that have been developed using (89)Zr. To date, (89)Zr-based PET imaging has been investigated for a wide variety of cancer-related targets, which include human epidermal growth factor receptor 2, epidermal growth factor receptor, prostate-specific membrane antigen, splice variant v6 of CD44, vascular endothelial growth factor, carbonic anhydrase IX, insulin-like growth factor 1 receptor, among others. With well-developed radiochemistry, commercial availability of chelating agents for (89)Zr labeling, increasingly widely available isotope supply, as well as successful proof-of-principle in pilot human studies, it is expected that PET imaging with (89)Zr-based tracers will be a constantly evolving and highly vibrant field in the near future.
Collapse
Affiliation(s)
- Yin Zhang
- Departments of Radiology and Medical Physics, School of Medicine and Public Health, University ofWisconsin - Madison, Madison, WI 53705-2275, USA
| | | | | |
Collapse
|
17
|
Novy Z, Barta P, Mandikova J, Laznicek M, Trejtnar F. A comparison of in vitro methods for determining the membrane receptor expression in cell lines. Nucl Med Biol 2012; 39:893-6. [PMID: 22497959 DOI: 10.1016/j.nucmedbio.2012.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Determining the number of expressed receptors per cell (NRPC) in cell lines is an important prerequisite for many experimental procedures in biomedical research. This paper focuses on the comparison of a newly developed method of determining NRPC - the Kinetic extrapolation method (KEX) - with the standard saturation method. These two methods, both based on radiolabeled ligand-receptor binding, were compared with the data on receptor expression found using quantified western blotting. METHODS Four cell lines with different expressions of epidermal growth factor receptor (EGFR) were chosen for the experiment: A431, HaCaT, HCT116 and HepG2. Two radiolabeled monoclonal antibodies specific for EGFR were used as ligands: [(131)I]-cetuximab and [(131)I]-panitumumab. The classic manual technique based on the saturation of cell receptors was performed on cells seeded in 24-well plates. The KEX method uses the LigandTracer, a special instrument which detects ligand retention in real time from seeded cells onto a rotating Petri dish. The western blot analysis was performed according to the routinely used procedure. RESULTS A very close accordance between the manual saturation technique and the KEX method was found in all four cell lines used. The NRPC in the cell lines follows the same order using both ligands: A431>HaCaT>HCT116≈HepG2. Similarly, consistent data on EGFR expression in the studied cell lines were obtained using western blot analysis and the radiolabeled ligand binding assays. CONCLUSIONS The KEX method could be as similarly useful for determining receptor expression as is the classic saturation method and western blotting.
Collapse
Affiliation(s)
- Zbynek Novy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Czech Republic
| | | | | | | | | |
Collapse
|
18
|
Targeted therapy in head and neck cancer. Tumour Biol 2012; 33:707-21. [PMID: 22373581 DOI: 10.1007/s13277-012-0350-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/03/2012] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) of multi-factorial etiopathogenesis is rising worldwide. Treatment-associated toxicity problems and treatment failure in advanced disease stages with conventional therapies have necessitated a focus on alternative strategies. Molecular targeted therapy, with the potential for increased selectivity and fewer adverse effects, hold promise in the treatment of HNSCC. In an attempt to improve outcomes in HNSCC, targeted therapeutic strategies have been developed. These strategies are focusing on the molecular biology of HNSCC in an attempt to target selected pathways involved in carcinogenesis. Inhibiting tumor growth and metastasis by focusing on specific protein or signal transduction pathways or by targeting the tumor microenvironment or vasculature are some of the new approaches. Targeted agents for HNSCC expected to improve the effectiveness of current therapy include EGFR inhibitors (Cetuximab, Panitumumab, Zalutumumab), EGFR tyrosine kinase inhibitors (Gefitinib, Erloitinib), VEGFR inhibitors (Bevacizumab, Vandetanib), and various inhibitors of, e.g., Src-family kinase, PARP, proteasome, mTOR, COX, and heat shock protein. Moreover, targeted molecular therapy can also act as a complement to other existing cancer therapies. Several studies have demonstrated that the combination of targeting techniques with conventional current treatment protocols may improve the treatment outcome and disease control, without exacerbating the treatment related toxicities. Some of the targeted approaches have been proved as promising therapeutic potentials and are already in use, whereas remainder exhibits mixed result and necessitates further studies. Identification of predictive biomarkers of resistance or sensitivity to these therapies remains a fundamental challenge in the optimal selection of patients most likely to benefit from targeted treatment.
Collapse
|
19
|
Malviya G, de Vries EFJ, Dierckx RA, Signore A. Synthesis and evaluation of 99mTc-labelled monoclonal antibody 1D09C3 for molecular imaging of major histocompatibility complex class II protein expression. Mol Imaging Biol 2011; 13:930-9. [PMID: 20812032 PMCID: PMC3179591 DOI: 10.1007/s11307-010-0407-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
PURPOSE It is known that major histocompatibility complex class II protein HLA-DR is highly expressed in B-cell lymphomas and in a variety of autoimmune and inflammatory diseases. Therefore, a radiolabelled fully humanized IgG4 monoclonal antibody (mAb) can provide useful prognostic and diagnostic information. Aims of the present study were to radiolabel an anti-HLA-DR mAb with technetium-99m and to evaluate its binding specificity, tissue distribution and targeting potential. PROCEDURES For labelling, we compared a direct method, after 2-mercaptoethanol (2-ME) reduction of disulphide bonds, with a two-step labelling method, using a heterobifunctional succinimidyl-6-hydrazinonicotinate hydrochloride chelator. Several in vitro quality controls and in vivo experiments in mice were performed. RESULTS We obtained highest labelling efficiency (LE, >98%) and specific activity (SA; 5,550 MBq/mg) via the direct method. In vitro quality control showed good stability, structural integrity and retention of the binding properties of the labelled mAb. The biodistribution in mice showed high and persistent uptake in spleen and suggests kidney and liver-mediated clearance pathways. In tumour targeting experiments, we observed high uptake in HLA-DR-positive xenografts compared to controls. In vivo binding was proportional to the number of injected cells. In the in vivo blocking assay, uptake of radiolabelled mAb was significantly decreased in mice pre-injected with 100-fold molar excess of unlabelled mAb. CONCLUSION We efficiently labelled a humanized anti-HLA-DR mAb with (99m)Tc using a direct labelling method. Radiolabelled mAb binds to human HLA-DR antigens and therefore warrants further evaluation as a prognostic and diagnostic tool for patients with lymphoma or autoimmune diseases.
Collapse
Affiliation(s)
- Gaurav Malviya
- Department of Nuclear Medicine and Molecular Imaging, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Abstract
There is great potential for targeted radionuclide therapy (TRT) in the treatment of head and neck cancer. In recent years, developments in fields such as antigen screening, protein engineering, and cancer biology have facilitated the rational design of targeted pharmaceuticals, with monoclonal antibodies forming the most rapidly expanding category. TRT may be a promising way to improve targeted treatment, especially in head and neck cancer, because of the intrinsic radiosensitivity of this tumor type. TRT may also provide a good foundation on which to build rational biologic combination therapies. In the next few years the use of TRT may offer new opportunities for further improvement of the therapeutic ratio that potentially may obviate or reduce the need for conventional cytotoxics.
Collapse
Affiliation(s)
- Marika V Nestor
- Unit of Otolaryngology and Head and Neck Surgery, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|