1
|
Feng L, Liu F, Soultanidis G, Liu C, Benkert T, Block KT, Fayad ZA, Yang Y. Magnetization-prepared GRASP MRI for rapid 3D T1 mapping and fat/water-separated T1 mapping. Magn Reson Med 2021; 86:97-114. [PMID: 33580909 PMCID: PMC8197608 DOI: 10.1002/mrm.28679] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to (i) develop Magnetization-Prepared Golden-angle RAdial Sparse Parallel (MP-GRASP) MRI using a stack-of-stars trajectory for rapid free-breathing T1 mapping and (ii) extend MP-GRASP to multi-echo acquisition (MP-Dixon-GRASP) for fat/water-separated (water-specific) T1 mapping. METHODS An adiabatic non-selective 180° inversion-recovery pulse was added to a gradient-echo-based golden-angle stack-of-stars sequence for magnetization-prepared 3D single-echo or 3D multi-echo acquisition. In combination with subspace-based GRASP-Pro reconstruction, the sequence allows for standard T1 mapping (MP-GRASP) or fat/water-separated T1 mapping (MP-Dixon-GRASP), respectively. The accuracy of T1 mapping using MP-GRASP was evaluated in a phantom and volunteers (brain and liver) against clinically accepted reference methods. The repeatability of T1 estimation was also assessed in the phantom and volunteers. The performance of MP-Dixon-GRASP for water-specific T1 mapping was evaluated in a fat/water phantom and volunteers (brain and liver). RESULTS ROI-based mean T1 values are correlated between the references and MP-GRASP in the phantom (R2 = 1.0), brain (R2 = 0.96), and liver (R2 = 0.73). MP-GRASP achieved good repeatability of T1 estimation in the phantom (R2 = 1.0), brain (R2 = 0.99), and liver (R2 = 0.82). Water-specific T1 is different from in-phase and out-of-phase composite T1 (composite T1 when fat and water signal are mixed in phase or out of phase) both in the phantom and volunteers. CONCLUSION This work demonstrated the initial performance of MP-GRASP and MP-Dixon-GRASP MRI for rapid 3D T1 mapping and 3D fat/water-separated T1 mapping in the brain (without motion) and in the liver (during free breathing). With fat/water-separated T1 estimation, MP-Dixon-GRASP could be potentially useful for imaging patients with fatty-liver diseases.
Collapse
Affiliation(s)
- Li Feng
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fang Liu
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georgios Soultanidis
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chenyu Liu
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Benkert
- MR Application Development, Siemens Healthcare GmbH, Erlangen, Germany
| | - Kai Tobias Block
- MR Application Development, Siemens Healthcare GmbH, Erlangen, Germany
- Center for Advanced Imaging Innovation and Research (CAIR), New York University School of Medicine, New York, NY, USA
| | - Zahi A. Fayad
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yang Yang
- Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Zhang X, Xie G, Lu N, Zhu Y, Wei Z, Su S, Shi C, Yan F, Liu X, Qiu B, Fan Z. 3D self-gated cardiac cine imaging at 3 Tesla using stack-of-stars bSSFP with tiny golden angles and compressed sensing. Magn Reson Med 2018; 81:3234-3244. [PMID: 30474151 DOI: 10.1002/mrm.27612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop and evaluate an accelerated 3D self-gated cardiac cine imaging technique at 3 Tesla without the use of external electrocardiogram triggering or respiratory gating. METHODS A 3D stack-of-stars balanced steady-state free precession sequence with a tiny golden angle sampling scheme was developed to reduced eddy current effect-related artefacts at 3 Tesla. Respiratory and cardiac motion were derived from a central 5-point self-gating signal extraction approach. The data acquired around the end-expiration phases were then sorted into individual cardiac bins and used for reconstruction with compressed sensing. To evaluate the performance of the proposed method, image quality (1: the best; 4: the worst) was quantitatively compared using both the proposed method and the conventional 3D golden-angle self-gated method. Linear regression and Bland-Altman analysis were used to assess the functional measurements agreement between the proposed method and the routine 2D breath-hold multi-slice technique. RESULTS Compared to the conventional 3D golden-angle self-gated method, the proposed method yielded images with much less streaking artifact and higher myocardium edge sharpness (0.50 ± 0.06 vs. 0.45 ± 0.05, P = 0.004). The proposed method provided an inferior image quality score to the routine 2D technique (2.13 ± 0.35 vs. 1.38 ± 0.52, P = 0.063) but a superior one to the conventional self-gated method (2.13 ± 0.35 vs. 3.13 ± 0.64, P = 0.031). Left ventricular functional measurements between the proposed method and routine 2D technique were all well in agreement. CONCLUSION This study presents a novel self-gating approach to realize rapid 3D cardiac cine imaging at 3 Tesla.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, People's Republic of China.,MR Collaborations NE Asia, Siemens Healthcare, Shenzhen, People's Republic of China
| | - Guoxi Xie
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.,Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Na Lu
- Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yanchun Zhu
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Zijun Wei
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Shi Su
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Caiyun Shi
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Fei Yan
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Xin Liu
- Paul C. Lauterber Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China
| | - Bensheng Qiu
- Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, People's Republic of China
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Departments of Medicine and Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
3
|
Kawaji K, Patel MB, Cantrell CG, Tanaka A, Marino M, Tamura S, Wang H, Wang Y, Carroll TJ, Ota T, Patel AR. A fast, noniterative approach for accelerated high-temporal resolution cine-CMR using dynamically interleaved streak removal in the power-spectral encoded domain with low-pass filtering (DISPEL) and modulo-prime spokes (MoPS). Med Phys 2017; 44:3450-3463. [PMID: 28339110 DOI: 10.1002/mp.12234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 03/03/2017] [Accepted: 03/03/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To introduce a pair of accelerated non-Cartesian acquisition principles that when combined, exploit the periodicity of k-space acquisition, and thereby enable acquisition of high-temporal cine Cardiac Magnetic Resonance (CMR). METHODS The mathematical formulation of a noniterative, undersampled non-Cartesian cine acquisition and reconstruction is presented. First, a low-pass filtering step that exploits streaking artifact redundancy is provided (i.e., Dynamically Interleaved Streak removal in the Power-spectrum Encoded domain with Low-pass filtering [DISPEL]). Next, an effective radial acquisition for the DISPEL approach that exploits the property of prime numbers is described (i.e., Modulo-Prime Spoke [MoPS]). Both DISPEL and MoPS are examined using numerical simulation of a digital heart phantom to show that high-temporal cine-CMR is feasible without removing physiologic motion vs aperiodic interleaving using Golden Angles. The combined high-temporal cine approach is next examined in 11 healthy subjects for a time-volume curve assessment of left ventricular systolic and diastolic performance vs conventional Cartesian cine-CMR reference. RESULTS The DISPEL method was first shown using simulation under different streak cycles to allow separation of undersampled radial streaking artifacts from physiologic motion with a sufficiently frequent streak-cycle interval. Radial interleaving with MoPS is next shown to allow interleaves with pseudo-Golden-Angle variants, and be more compatible with DISPEL against irrational and nonperiodic rotation angles, including the Golden-Angle-derived rotations. In the in vivo data, the proposed method showed no statistical difference in the systolic performance, while diastolic parameters sensitive to the cine's temporal resolution were statistically significant (P < 0.05 vs Cartesian cine). CONCLUSIONS We demonstrate a high-temporal resolution cine-CMR using DISPEL and MoPS, whose streaking artifact was separated from physiologic motion.
Collapse
Affiliation(s)
- Keigo Kawaji
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Mita B Patel
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Akiko Tanaka
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Marco Marino
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Satoshi Tamura
- Department of Electrical, Electronic and Computer Engineering, Gifu University, Gifu City, Japan
| | | | - Yi Wang
- Departments of Biomedical Engineering and Radiology, Cornell University, New York, NY, USA
| | - Timothy J Carroll
- Department of Radiology, The University of Chicago, Chicago, IL, USA
| | - Takeyoshi Ota
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Amit R Patel
- Departments of Medicine and Radiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Liu J, Feng L, Shen HW, Zhu C, Wang Y, Mukai K, Brooks GC, Ordovas K, Saloner D. Highly-accelerated self-gated free-breathing 3D cardiac cine MRI: validation in assessment of left ventricular function. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 30:337-346. [PMID: 28120280 DOI: 10.1007/s10334-017-0607-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This work presents a highly-accelerated, self-gated, free-breathing 3D cardiac cine MRI method for cardiac function assessment. MATERIALS AND METHODS A golden-ratio profile based variable-density, pseudo-random, Cartesian undersampling scheme was implemented for continuous 3D data acquisition. Respiratory self-gating was achieved by deriving motion signal from the acquired MRI data. A multi-coil compressed sensing technique was employed to reconstruct 4D images (3D+time). 3D cardiac cine imaging with self-gating was compared to bellows gating and the clinical standard breath-held 2D cine imaging for evaluation of self-gating accuracy, image quality, and cardiac function in eight volunteers. Reproducibility of 3D imaging was assessed. RESULTS Self-gated 3D imaging provided an image quality score of 3.4 ± 0.7 vs 4.0 ± 0 with the 2D method (p = 0.06). It determined left ventricular end-systolic volume as 42.4 ± 11.5 mL, end-diastolic volume as 111.1 ± 24.7 mL, and ejection fraction as 62.0 ± 3.1%, which were comparable to the 2D method, with bias ± 1.96 × SD of -0.8 ± 7.5 mL (p = 0.90), 2.6 ± 3.3 mL (p = 0.84) and 1.4 ± 6.4% (p = 0.45), respectively. CONCLUSION The proposed 3D cardiac cine imaging method enables reliable respiratory self-gating performance with good reproducibility, and provides comparable image quality and functional measurements to 2D imaging, suggesting that self-gated, free-breathing 3D cardiac cine MRI framework is promising for improved patient comfort and cardiac MRI scan efficiency.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA.
| | - Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Hsin-Wei Shen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Chengcheng Zhu
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Yan Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - Kanae Mukai
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Gabriel C Brooks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Karen Ordovas
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA
| | - David Saloner
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 185 Berry St, Suite 350, San Francisco, CA, 94107, USA.,Radiology Service, VA Medical Center, San Francisco, CA, USA
| |
Collapse
|
5
|
Zhu Y, Spincemaille P, Liu J, Li S, Nguyen TD, Prince MR, Xie Y, Wang Y. Nonlinear profile order for three-dimensional hybrid radial acquisition applied to self-gated free-breathing cardiac cine MRI. CHINESE PHYSICS B 2017; 26:018701. [DOI: 10.1088/1674-1056/26/1/018701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
|
6
|
Free-Breathing 3D Imaging of Right Ventricular Structure and Function Using Respiratory and Cardiac Self-Gated Cine MRI. BIOMED RESEARCH INTERNATIONAL 2015; 2015:819102. [PMID: 26185764 PMCID: PMC4491385 DOI: 10.1155/2015/819102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/26/2014] [Accepted: 10/07/2014] [Indexed: 11/20/2022]
Abstract
Providing a movie of the beating heart in a single prescribed plane, cine MRI has been widely used in clinical cardiac diagnosis, especially in the left ventricle (LV). Right ventricular (RV) morphology and function are also important for the diagnosis of cardiopulmonary diseases and serve as predictors for the long term outcome. The purpose of this study is to develop a self-gated free-breathing 3D imaging method for RV quantification and to evaluate its performance by comparing it with breath-hold 2D cine imaging in 7 healthy volunteers. Compared with 2D, the 3D RV functional measurements show a reduction of RV end-diastole volume (RVEDV) by 10%, increase of RV end-systole volume (RVESV) by 1.8%, reduction of RV systole volume (RVSV) by 21%, and reduction of RV ejection fraction (RVEF) by 12%. High correlations between the two techniques were found (RVEDV: 0.94; RVESV: 0.85; RVSV: 0.95; and RVEF: 0.89). Compared with 2D, the 3D image quality measurements show a small reduction in blood SNR, myocardium-blood CNR, myocardium contrast, and image sharpness. In conclusion, the proposed self-gated free-breathing 3D cardiac cine imaging technique provides comparable image quality and correlated functional measurements to those acquired with the multiple breath-hold 2D technique in RV.
Collapse
|
7
|
Current state of the art cardiovascular MR imaging techniques for assessment of ischemic heart disease. Radiol Clin North Am 2014; 53:335-44. [PMID: 25726998 DOI: 10.1016/j.rcl.2014.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cardiac magnetic resonance (CMR) imaging is increasingly being used to evaluate patients with known or suspected ischemic heart disease, because of its ability to acquire images in any orientation and the wide variety of sequences available to characterize normal and abnormal structure and function. Substantial improvements have been made in the hardware and software used to perform CMR, resulting in better and more consistent image quality. There has been a greater emphasis recently in developing and validating quantitative CMR techniques. This article reviews advances in CMR techniques for assessing cardiac function, myocardial perfusion, late gadolinium enhancement, and tissue characterization with T1 and T2 mapping sequences.
Collapse
|
8
|
Zhang S, Joseph AA, Voit D, Schaetz S, Merboldt KD, Unterberg-Buchwald C, Hennemuth A, Lotz J, Frahm J. Real-time magnetic resonance imaging of cardiac function and flow-recent progress. Quant Imaging Med Surg 2014; 4:313-29. [PMID: 25392819 DOI: 10.3978/j.issn.2223-4292.2014.06.03] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/30/2014] [Indexed: 11/14/2022]
Abstract
Cardiac structure, function and flow are most commonly studied by ultrasound, X-ray and magnetic resonance imaging (MRI) techniques. However, cardiovascular MRI is hitherto limited to electrocardiogram (ECG)-synchronized acquisitions and therefore often results in compromised quality for patients with arrhythmias or inabilities to comply with requested protocols-especially with breath-holding. Recent advances in the development of novel real-time MRI techniques now offer dynamic imaging of the heart and major vessels with high spatial and temporal resolution, so that examinations may be performed without the need for ECG synchronization and during free breathing. This article provides an overview of technical achievements, physiological validations, preliminary patient studies and translational aspects for a future clinical scenario of cardiovascular MRI in real time.
Collapse
Affiliation(s)
- Shuo Zhang
- 1 Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen 37070, Germany ; 2 DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany ; 3 Diagnostische und Interventionelle Radiologie, 4 Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen 37075, Germany ; 5 Fraunhofer MEVIS Institute for Medical Image Computing, Bremen, Germany
| | - Arun A Joseph
- 1 Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen 37070, Germany ; 2 DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany ; 3 Diagnostische und Interventionelle Radiologie, 4 Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen 37075, Germany ; 5 Fraunhofer MEVIS Institute for Medical Image Computing, Bremen, Germany
| | - Dirk Voit
- 1 Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen 37070, Germany ; 2 DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany ; 3 Diagnostische und Interventionelle Radiologie, 4 Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen 37075, Germany ; 5 Fraunhofer MEVIS Institute for Medical Image Computing, Bremen, Germany
| | - Sebastian Schaetz
- 1 Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen 37070, Germany ; 2 DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany ; 3 Diagnostische und Interventionelle Radiologie, 4 Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen 37075, Germany ; 5 Fraunhofer MEVIS Institute for Medical Image Computing, Bremen, Germany
| | - Klaus-Dietmar Merboldt
- 1 Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen 37070, Germany ; 2 DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany ; 3 Diagnostische und Interventionelle Radiologie, 4 Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen 37075, Germany ; 5 Fraunhofer MEVIS Institute for Medical Image Computing, Bremen, Germany
| | - Christina Unterberg-Buchwald
- 1 Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen 37070, Germany ; 2 DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany ; 3 Diagnostische und Interventionelle Radiologie, 4 Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen 37075, Germany ; 5 Fraunhofer MEVIS Institute for Medical Image Computing, Bremen, Germany
| | - Anja Hennemuth
- 1 Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen 37070, Germany ; 2 DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany ; 3 Diagnostische und Interventionelle Radiologie, 4 Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen 37075, Germany ; 5 Fraunhofer MEVIS Institute for Medical Image Computing, Bremen, Germany
| | - Joachim Lotz
- 1 Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen 37070, Germany ; 2 DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany ; 3 Diagnostische und Interventionelle Radiologie, 4 Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen 37075, Germany ; 5 Fraunhofer MEVIS Institute for Medical Image Computing, Bremen, Germany
| | - Jens Frahm
- 1 Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen 37070, Germany ; 2 DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany ; 3 Diagnostische und Interventionelle Radiologie, 4 Kardiologie und Pneumologie, Universitätsmedizin Göttingen, Göttingen 37075, Germany ; 5 Fraunhofer MEVIS Institute for Medical Image Computing, Bremen, Germany
| |
Collapse
|
9
|
Coppo S, Piccini D, Bonanno G, Chaptinel J, Vincenti G, Feliciano H, van Heeswijk RB, Schwitter J, Stuber M. Free-running 4D whole-heart self-navigated golden angle MRI: Initial results. Magn Reson Med 2014; 74:1306-16. [PMID: 25376772 DOI: 10.1002/mrm.25523] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/01/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE To test the hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously using a single four-dimensional (4D) acquisition. METHODS A free-running 4D whole-heart self-navigated acquisition incorporating a golden angle radial trajectory was implemented and tested in vivo in nine healthy adult human subjects. Coronary magnetic resonance angiography (MRA) datasets with retrospective selection of acquisition window width and position were extracted and quantitatively compared with baseline self-navigated electrocardiography (ECG) -triggered coronary MRA. From the 4D datasets, the left-ventricular end-systolic, end-diastolic volumes (ESV & EDV) and ejection fraction (EF) were computed and compared with values obtained from conventional 2D cine images. RESULTS The 4D datasets enabled dynamic assessment of the whole heart with isotropic spatial resolution of 1.15 mm(3). Coronary artery image quality was very similar to that of the ECG-triggered baseline scan despite some SNR penalty. A good agreement between 4D and 2D cine imaging was found for EDV, ESV, and EF. CONCLUSION The hypothesis that both coronary anatomy and ventricular function can be assessed simultaneously in vivo has been tested positive. Retrospective and flexible acquisition window selection allows to best visualize each coronary segment at its individual time point of quiescence.
Collapse
Affiliation(s)
- Simone Coppo
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Davide Piccini
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland
| | - Gabriele Bonanno
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Jérôme Chaptinel
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Gabriella Vincenti
- Department of Cardiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Hélène Feliciano
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ruud B van Heeswijk
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Juerg Schwitter
- Department of Cardiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Matthias Stuber
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
10
|
Barkauskas KJ, Rajiah P, Ashwath R, Hamilton JI, Chen Y, Ma D, Wright KL, Gulani V, Griswold MA, Seiberlich N. Quantification of left ventricular functional parameter values using 3D spiral bSSFP and through-time non-Cartesian GRAPPA. J Cardiovasc Magn Reson 2014; 16:65. [PMID: 25231607 PMCID: PMC4160541 DOI: 10.1186/s12968-014-0065-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. METHODS Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). RESULTS Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. CONCLUSION The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.
Collapse
Affiliation(s)
| | - Prabhakar Rajiah
- />Cardiothoracic Imaging, Department of Radiology, University Hospitals Case Medical Center, Cleveland, Ohio USA
| | - Ravi Ashwath
- />Pediatric Cardiology, Rainbow Babies and Children’s Hospital, University Hospitals Case Medical Center, Cleveland, Ohio USA
| | - Jesse I Hamilton
- />Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio USA
| | - Yong Chen
- />Radiology, University Hospitals Case Medical Center, Cleveland, Ohio USA
| | - Dan Ma
- />Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio USA
| | - Katherine L Wright
- />Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio USA
| | - Vikas Gulani
- />Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio USA
- />Radiology, University Hospitals Case Medical Center, Cleveland, Ohio USA
| | - Mark A Griswold
- />Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio USA
- />Radiology, University Hospitals Case Medical Center, Cleveland, Ohio USA
| | - Nicole Seiberlich
- />Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio USA
| |
Collapse
|
11
|
Barker AJ, Roldán-Alzate A, Entezari P, Shah SJ, Chesler NC, Wieben O, Markl M, François CJ. Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: results from two institutions. Magn Reson Med 2014; 73:1904-13. [PMID: 24974951 DOI: 10.1002/mrm.25326] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE To compare pulmonary artery flow using Cartesian and radially sampled four-dimensional flow-sensitive (4D flow) MRI at two institutions. METHODS Nineteen healthy subjects and 17 pulmonary arterial hypertension (PAH) subjects underwent a Cartesian 4D flow acquisition (institution 1) or a three-dimensional radial acquisition (institution 2). The diameter, peak systolic velocity (Vmax), peak flow (Qmax), stroke volume (SV), and wall shear stress (WSS) were computed in two-dimensional analysis planes at the main, right, and left pulmonary artery. Interobserver variability, interinstitutional differences, flow continuity, and the hemodynamic measurements in healthy and PAH subjects were assessed. RESULTS Vmax, Qmax, SV, and WSS at all locations were significantly lower (P < 0.05) in PAH compared with healthy subjects. The limits of agreement were 0.16 m/s, 2.4 L/min, 10 mL, and 0.31 N/m(2) for Vmax, Qmax, SV, and WSS, respectively. Differences between Qmax and SV using Cartesian and radial sequences were not significant. Plane placement and acquisition exhibited isolated, site-based differences between Vmax and WSS. CONCLUSIONS 4D flow MRI was used to detect differences in pulmonary artery hemodynamics for PAH subjects. Flow and WSS in healthy and PAH subject cohorts were similar between Cartesian- and radial-based 4D flow MRI acquisitions with minimal interobserver variability.
Collapse
Affiliation(s)
- Alex J Barker
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Liu J, Glenn OA, Xu D. Fast, free-breathing, in vivo fetal imaging using time-resolved 3D MRI technique: preliminary results. Quant Imaging Med Surg 2014; 4:123-8. [PMID: 24834424 DOI: 10.3978/j.issn.2223-4292.2014.04.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 04/21/2014] [Indexed: 11/14/2022]
Abstract
Fetal MR imaging is very challenging due to the movement of fetus and the breathing motion of the mother. Current clinical protocols involve quick 2D scouting scans to determine scan plane and often several attempts to reorient the scan plane when the fetus moves. This makes acquisition of fetal MR images clinically challenging and results in long scan times in order to obtain images that are of diagnostic quality. Compared to 2D imaging, 3D imaging of the fetus has many advantages such as higher SNR and ability to reformat images in multiple planes. However, it is more sensitive to motion and challenging for fetal imaging due to irregular fetal motion in addition to maternal breathing and cardiac motion. This aim of this study is to develop a fast 3D fetal imaging technique to resolve the challenge of imaging the moving fetus. This 3D imaging sequence has multi-echo radial sampling in-plane and conventional Cartesian encoding through plane, which provides motion robustness and high data acquisition efficiency. The utilization of a golden-ratio based projection profile allows flexible time-resolved image reconstruction with arbitrary temporal resolution at arbitrary time points as well as high signal-to-noise and contrast-to-noise ratio. The nice features of the developed image technique allow the 3D visualization of the movements occurring throughout the scan. In this study, we applied this technique to three human subjects for fetal MRI and achieved promising preliminary results of fetal brain, heart and lung imaging.
Collapse
Affiliation(s)
- Jing Liu
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA ; 2 Joint UCSF/UC Berkeley Graduate Group in Bioengineering, San Francisco, California, USA
| | - Orit A Glenn
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA ; 2 Joint UCSF/UC Berkeley Graduate Group in Bioengineering, San Francisco, California, USA
| | - Duan Xu
- 1 Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California, USA ; 2 Joint UCSF/UC Berkeley Graduate Group in Bioengineering, San Francisco, California, USA
| |
Collapse
|
13
|
Roldán-Alzate A, Frydrychowicz A, Johnson KM, Kellihan H, Chesler NC, Wieben O, François CJ. Non-invasive assessment of cardiac function and pulmonary vascular resistance in an canine model of acute thromboembolic pulmonary hypertension using 4D flow cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2014; 16:23. [PMID: 24625242 PMCID: PMC3995608 DOI: 10.1186/1532-429x-16-23] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 03/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to quantify right (RV) and left (LV) ventricular function, pulmonary artery flow (QP), tricuspid valve regurgitation velocity (TRV), and aorta flow (QS) from a single 4D flow cardiovascular magnetic resonance (CMR) (time-resolved three-directionally motion encoded CMR) sequence in a canine model of acute thromboembolic pulmonary hypertension (PH). METHODS Acute PH was induced in six female beagles by microbead injection into the right atrium. Pulmonary arterial (PAP) and pulmonary capillary wedge (PCWP) pressures and cardiac output (CO) were measured by right heart catheterization (RHC) at baseline and following induction of acute PH. Pulmonary vascular resistance (PVRRHC) was calculated from RHC values of PAP, PCWP and CO (PVRRHC = (PAP-PCWP)/CO). Cardiac magnetic resonance (CMR) was performed on a 3 T scanner at baseline and following induction of acute PH. RV and LV end-diastolic (EDV) and end-systolic (ESV) volumes were determined from both CINE balanced steady-state free precession (bSSFP) and 4D flow CMR magnitude images. QP, TRV, and QS were determined from manually placed cutplanes in the 4D flow CMR flow-sensitive images in the main (MPA), right (RPA), and left (LPA) pulmonary arteries, the tricuspid valve (TRV), and aorta respectively. MPA, RPA, and LPA flow was also measured using two-dimensional flow-sensitive (2D flow) CMR. RESULTS Biases between 4D flow CMR and bSSFP were 0.8 mL and 1.6 mL for RV EDV and RV ESV, respectively, and 0.8 mL and 4 mL for LV EDV and LV ESV, respectively. Flow in the MPA, RPA, and LPA did not change after induction of acute PAH (p = 0.42-0.81). MPA, RPA, and LPA flow determined with 4D flow CMR was significantly lower than with 2D flow (p < 0.05). The correlation between QP/TRV and PVRRHC was 0.95. The average QP/QS was 0.96 ± 0.11. CONCLUSIONS Using both magnitude and flow-sensitive data from a single 4D flow CMR acquisition permits simultaneous quantification of cardiac function and cardiopulmonary hemodynamic parameters important in the assessment of PH.
Collapse
MESH Headings
- Acute Disease
- Animals
- Aorta/physiopathology
- Blood Flow Velocity
- Cardiac Catheterization
- Disease Models, Animal
- Dogs
- Feasibility Studies
- Female
- Hypertension, Pulmonary/diagnosis
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/physiopathology
- Image Interpretation, Computer-Assisted
- Magnetic Resonance Imaging
- Predictive Value of Tests
- Pulmonary Artery/physiopathology
- Pulmonary Circulation
- Pulmonary Embolism/diagnosis
- Pulmonary Embolism/etiology
- Pulmonary Embolism/physiopathology
- Regional Blood Flow
- Tricuspid Valve/physiopathology
- Tricuspid Valve Insufficiency/diagnosis
- Tricuspid Valve Insufficiency/etiology
- Tricuspid Valve Insufficiency/physiopathology
- Vascular Resistance
- Ventricular Dysfunction, Right/diagnosis
- Ventricular Dysfunction, Right/etiology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Function, Left
- Ventricular Function, Right
Collapse
Affiliation(s)
- Alejandro Roldán-Alzate
- Department of Radiology, Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, Wisconsin 53792-3252, USA
- Department of Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Alex Frydrychowicz
- Department of Radiology, Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, Wisconsin 53792-3252, USA
- Klinik für Radiologie und Nuklearmedizin - Campus Lübeck, Lübeck, Germany
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Heidi Kellihan
- School of Veterinary Medicine, University of Wisconsin – Madison, Madison, WI, USA
| | - Naomi C Chesler
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, USA
| | - Oliver Wieben
- Department of Radiology, Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, Wisconsin 53792-3252, USA
- Department of Medical Physics, University of Wisconsin – Madison, Madison, WI, USA
| | - Christopher J François
- Department of Radiology, Clinical Science Center, University of Wisconsin - Madison, 600 Highland Avenue, Madison, Wisconsin 53792-3252, USA
| |
Collapse
|
14
|
Voit D, Zhang S, Unterberg-Buchwald C, Sohns JM, Lotz J, Frahm J. Real-time cardiovascular magnetic resonance at 1.5 T using balanced SSFP and 40 ms resolution. J Cardiovasc Magn Reson 2013; 15:79. [PMID: 24028285 PMCID: PMC3847592 DOI: 10.1186/1532-429x-15-79] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/04/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While cardiovascular magnetic resonance (CMR) commonly employs ECG-synchronized cine acquisitions with balanced steady-state free precession (SSFP) contrast at 1.5 T, recent developments at 3 T demonstrate significant potential for T1-weighted real-time imaging at high spatiotemporal resolution using undersampled radial FLASH. The purpose of this work was to combine both ideas and to evaluate a corresponding real-time CMR method at 1.5 T with SSFP contrast. METHODS Radial gradient-echo sequences with fully balanced gradients and at least 15-fold undersampling were implemented on two CMR systems with different gradient performance. Image reconstruction by regularized nonlinear inversion (NLINV) was performed offline and resulted in real-time SSFP CMR images at a nominal resolution of 1.8 mm and with acquisition times of 40 ms. RESULTS Studies of healthy subjects demonstrated technical feasibility in terms of robustness and general image quality. Clinical applicability with access to quantitative evaluations (e.g., ejection fraction) was confirmed by preliminary applications to 27 patients with typical indications for CMR including arrhythmias and abnormal wall motion. Real-time image quality was slightly lower than for cine SSFP recordings, but considered diagnostic in all cases. CONCLUSIONS Extending conventional cine approaches, real-time radial SSFP CMR with NLINV reconstruction provides access to individual cardiac cycles and allows for studies of patients with irregular heartbeat.
Collapse
Affiliation(s)
- Dirk Voit
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070, Göttingen, Germany
| | - Shuo Zhang
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070, Göttingen, Germany
- DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany
| | - Christina Unterberg-Buchwald
- Kardiologie und Pneumologie, Universitätsmedizin Göttingen, 37075, Göttingen, Germany
- Diagnostische und Interventionelle Radiologie, Universitätsmedizin Göttingen, 37075Göttingen, Germany
- DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany
| | - Jan M Sohns
- Diagnostische und Interventionelle Radiologie, Universitätsmedizin Göttingen, 37075Göttingen, Germany
- DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany
| | - Joachim Lotz
- Diagnostische und Interventionelle Radiologie, Universitätsmedizin Göttingen, 37075Göttingen, Germany
- DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, 37070, Göttingen, Germany
- DZHK (German Cardiovascular Research Center), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
The Year in Cardiac Imaging. J Am Coll Cardiol 2012; 59:1849-60. [DOI: 10.1016/j.jacc.2012.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 01/27/2012] [Accepted: 01/31/2012] [Indexed: 11/20/2022]
|
16
|
Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. AJR Am J Roentgenol 2012; 198:W250-9. [PMID: 22358022 DOI: 10.2214/ajr.11.6969] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The quantification of cardiac flow and ventricular volumes is an essential goal of many congenital heart MRI examinations, often requiring acquisition of multiple 2D phase-contrast and bright-blood cine steady-state free precession (SSFP) planes. Scan acquisition, however, is lengthy and highly reliant on an imager who is well-versed in structural heart disease. Although it can also be lengthy, 3D time-resolved (4D) phase-contrast MRI yields global flow patterns and is simpler to perform. We therefore sought to accelerate 4D phase contrast and to determine whether equivalent flow and volume measurements could be extracted. MATERIALS AND METHODS Four-dimensional phase contrast was modified for higher acceleration with compressed sensing. Custom software was developed to process 4D phase-contrast images. We studied 29 patients referred for congenital cardiac MRI who underwent a routine clinical protocol, including cine short-axis stack SSFP and 2D phase contrast, followed by contrast-enhanced 4D phase contrast. To compare quantitative measurements, Bland-Altman analysis, paired Student t tests, and F tests were used. RESULTS Ventricular end-diastolic, end-systolic, and stroke volumes obtained from 4D phase contrast and SSFP were well correlated (ρ = 0.91-0.95; r(2) = 0.83-0.90), with no statistically significant difference. Ejection fractions were well correlated in a subpopulation that underwent higher-resolution compressed-sensing 4D phase contrast (ρ = 0.88; r(2) = 0.77). Four-dimensional phase contrast and 2D phase contrast flow rates were also well correlated (ρ = 0.90; r(2) = 0.82). Excluding ventricles with valvular insufficiency, cardiac outputs derived from outlet valve flow and stroke volumes were more consistent by 4D phase contrast than by 2D phase contrast and SSFP. CONCLUSION Combined parallel imaging and compressed sensing can be applied to 4D phase contrast. With custom software, flow and ventricular volumes may be extracted with comparable accuracy to SSFP and 2D phase contrast. Furthermore, cardiac outputs were more consistent by 4D phase contrast.
Collapse
|
17
|
Jung Y, Samsonov AA, Bydder M, Block WF. Self-calibrated multiple-echo acquisition with radial trajectories using the conjugate gradient method (SMART-CG). J Magn Reson Imaging 2011; 33:980-7. [PMID: 21448967 DOI: 10.1002/jmri.22482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To remove phase inconsistencies between multiple echoes, an algorithm using a radial acquisition to provide inherent phase and magnitude information for self correction was developed. The information also allows simultaneous support for parallel imaging for multiple coil acquisitions. MATERIALS AND METHODS Without a separate field map acquisition, a phase estimate from each echo in multiple echo train was generated. When using a multiple channel coil, magnitude and phase estimates from each echo provide in vivo coil sensitivities. An algorithm based on the conjugate gradient method uses these estimates to simultaneously remove phase inconsistencies between echoes, and in the case of multiple coil acquisition, simultaneously provides parallel imaging benefits. The algorithm is demonstrated on single channel, multiple channel, and undersampled data. RESULTS Substantial image quality improvements were demonstrated. Signal dropouts were completely removed and undersampling artifacts were well suppressed. CONCLUSION The suggested algorithm is able to remove phase cancellation and undersampling artifacts simultaneously and to improve image quality of multiecho radial imaging, the important technique for fast three-dimensional MRI data acquisition.
Collapse
Affiliation(s)
- Youngkyoo Jung
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | |
Collapse
|
18
|
Frydrychowicz A, François CJ, Turski PA. Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur J Radiol 2011; 80:24-35. [PMID: 21333479 DOI: 10.1016/j.ejrad.2011.01.094] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
Unlike other magnetic resonance angiographic techniques, phase contrast imaging (PC-MRI) offers co-registered morphologic images and velocity data within a single acquisition. While the basic principle of PC-MRI dates back almost 3 decades, novel time-resolved three-dimensional PC-MRI (4D PC-MRI) approaches have become increasingly researched over the past years. So-called 4D PC-MRI includes three-directional velocity encoding in a three-dimensional imaging volume over time, thereby providing the opportunity to comprehensively analyze human hemodynamics in vivo. Moreover, its large volume coverage offers the option to study systemic hemodynamic effects. Additionally, this offers the possibility to re-visit flow in any location of interest without being limited to predetermined two-dimensional slices. The attention received for hemodynamic research is partially based on flow-based theories of atherogenesis and arterial remodeling. 4D PC-MRI can be used to calculate flow-related vessel wall parameters and may hence serve as a diagnostic tool in preemptive medicine. Furthermore, technical improvements including the availability of sufficient computing power, data storage capabilities, and optimized acceleration schemes for data acquisition as well as comprehensive image processing algorithms have largely facilitated recent research progresses. We will present an overview of the potential of this relatively young imaging paradigm. After acquisition and processing the data in morphological and phase difference images, various visualization strategies permit the qualitative analysis of hemodynamics. A multitude of quantitative parameters such as pulse wave velocities and estimates of wall shear stress which might serve as future biomarkers can be extracted. Thereby, exciting new opportunities for vascular imaging and diagnosis are available.
Collapse
Affiliation(s)
- Alex Frydrychowicz
- Department of Radiology, University of Wisconsin - Madison, United States.
| | | | | |
Collapse
|