1
|
Solomon RJ. Acute Kidney Injury Prevention Following Cardiac Catheterization: The Ins and Outs of Management. Kidney Med 2024; 6:100865. [PMID: 39157195 PMCID: PMC11327454 DOI: 10.1016/j.xkme.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024] Open
Affiliation(s)
- Richard J. Solomon
- Department of Medicine, Division of Nephrology, University of Vermont, Larner College of Medicine, Burlington, VT
| |
Collapse
|
2
|
Hosszu A, Kaucsar T, Seeliger E, Fekete A. Animal Models of Renal Pathophysiology and Disease. Methods Mol Biol 2021; 2216:27-44. [PMID: 33475992 DOI: 10.1007/978-1-0716-0978-1_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanisms of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide a comprehensive overview of animal models of acute and chronic kidney diseases, highlighting MRI-specific considerations, advantages, and pitfalls, and thus assisting the researcher in experiment planning.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
Affiliation(s)
- Adam Hosszu
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Kaucsar
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erdmann Seeliger
- Working Group Integrative Kidney Physiology, Institute of Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Andrea Fekete
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Abstract
Renal diseases remain devastating illnesses with unacceptably high rates of mortality and morbidity worldwide. Animal models are essential tools to better understand the pathomechanism of kidney-related illnesses and to develop new, successful therapeutic strategies. Magnetic resonance imaging (MRI) has been actively explored in the last decades for assessing renal function, perfusion, tissue oxygenation as well as the degree of fibrosis and inflammation. This chapter aims to provide an overview of the preparation and monitoring of small animals before, during, and after surgical interventions or MR imaging. Standardization of experimental settings such as body temperature or hydration of animals and minimizing pain and distress are essential for diminishing nonexperimental variables as well as for conducting ethical research.This publication is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers.
Collapse
|
4
|
Wang Y, Ren K, Liu Y, Sun WG, Wang JH, Zhang X, Wu CH. Application of BOLD MRI and DTI for the evaluation of renal effect related to viscosity of iodinated contrast agent in a rat model. J Magn Reson Imaging 2017; 46:1320-1331. [PMID: 28248433 DOI: 10.1002/jmri.25683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/06/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To evaluate the effects of viscosity of contrast agent (CA) on intrarenal oxygenation and diffusion as measured by blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) in a rat model. MATERIALS AND METHODS Radiocontrast iodixanol formulated in three viscosities were designated 270, 320, and 350 (mg iodine/mL). Sixty-three male Wistar rats were divided into four groups. Saline and iodixanol (4 g iodine/kg) were administered. MR images were acquired on a 3.0T scanner at baseline and at 1 hour, 24 hours, 48 hours, and 72 hours postinjection of solutions. BOLD-MRI was performed with a multiple gradient-recalled-echo sequence. The changes in R2*, apparent diffusion coefficient (ADC), fractional anisotropy (FA), histology, and hypoxia-inducible factor-1α (HIF-1α) immunoexpression were evaluated. The R2*, ADC, and FA values were normalized to baseline to calculate ΔR2*, ΔADC, and ΔFA. RESULTS Compared with baseline levels, distinct elevation of ΔR2* (P < 0.05) and obvious decrease in ΔADC (P < 0.01) and ΔFA (P < 0.05) were observed in all the anatomical compartments at 1 hour after administration of CA. The absolute values in ΔR2*, ΔADC, and ΔFA increased with increases in CA viscosity, and differed significantly between the CA groups in renal cortex (CO), outer stripe of outer medulla (OSOM), and inner stripe of outer medulla (ISOM) (all P < 0.05). A significant positive correlation was observed between ΔR2* and HIF-1α expression (P < 0.001, r = 0.75). Significant negative correlations were observed between ΔADC, ΔFA, and pathologies in CO, OSOM, ISOM (all P < 0.001, r = -0.68-0.87; all P < 0.001, r = -0.60-0.66). CONCLUSION The effect of CA viscosity on intrarenal oxygenation and diffusion was viscosity-dependent, and was identified using BOLD-MRI and DTI. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1320-1331.
Collapse
Affiliation(s)
- Yi Wang
- Department of Radiology, First Hospital of China Medical University, Shenyang, P.R. China.,Key Laboratory of Imaging Diagnosis and Interventional Radiology of Liaoning Province, Shenyang, P.R. China
| | - Ke Ren
- Department of Radiology, First Hospital of China Medical University, Shenyang, P.R. China
| | - Yi Liu
- Department of Radiology, First Hospital of China Medical University, Shenyang, P.R. China
| | - Wen-Ge Sun
- Department of Radiology, First Hospital of China Medical University, Shenyang, P.R. China
| | - Jia-Huan Wang
- Department of Radiology, First Hospital of China Medical University, Shenyang, P.R. China
| | - Xin Zhang
- Department of Radiology, First Hospital of China Medical University, Shenyang, P.R. China.,Key Laboratory of Imaging Diagnosis and Interventional Radiology of Liaoning Province, Shenyang, P.R. China
| | - Cheng-Hua Wu
- Department of Radiology, First Hospital of China Medical University, Shenyang, P.R. China.,Key Laboratory of Imaging Diagnosis and Interventional Radiology of Liaoning Province, Shenyang, P.R. China
| |
Collapse
|
5
|
Zhang LJ, Zhang Z, Xu J, Jin N, Luo S, Larson AC, Lu GM. Carbogen gas-challenge blood oxygen level-dependent magnetic resonance imaging in hepatocellular carcinoma: Initial results. Oncol Lett 2015; 10:2009-2014. [PMID: 26622788 PMCID: PMC4579908 DOI: 10.3892/ol.2015.3526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 05/13/2015] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to evaluate the feasibility of performing carbogen gas-challenge blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) measurements in patients with hepatocellular carcinoma (HCC). A total of 25 patients with HCC underwent T2* mapping derived from multi-echo gradient-recalled echo imaging prior to and following breathing carbogen (95% O2 and 5% CO2) for 10 min. Follow-up T2* mapping was performed in 5 patients 1 day after transarterial chemoembolization (TACE). T2*, R2* and ∆R2* values (R2*air - R2*carb) of the whole tumor, the solid region of the tumor and the adjacent liver parenchyma were measured and compared in the patients with HCC. The T2* value of the solid region of the tumor following carbogen breathing was higher than the value following room air breathing (P<0.05), and the R2* value of room air breathing was higher than that following carbogen breathing (P<0.05). ∆R2* values of the tumor and the adjacent liver parenchyma prior to and following carbogen breathing were 2.4±7.8, 8.1±14.7 and 2.0±11.0 sec−1, respectively. R2* values were significantly decreased in 2 cases 1 day after TACE (17.8 vs. −3.4 sec−1 and 10.2 vs. 2.4 sec−1). Overall, carbogen gas-challenge BOLD MRI measurements are feasible in clinical settings and may serve as a novel functional biomarker for monitoring the treatment efficacy of embolic therapies for HCC.
Collapse
Affiliation(s)
- Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nangjing, Jiangsu 210002, P.R. China
| | - Zhuoli Zhang
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60611, USA ; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60611, USA
| | - Jian Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nangjing, Jiangsu 210002, P.R. China
| | - Ning Jin
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60611, USA ; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60611, USA
| | - Song Luo
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nangjing, Jiangsu 210002, P.R. China
| | - Andrew C Larson
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60611, USA ; Department of Biomedical Engineering, Northwestern University, Evanston, IL 60611, USA
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nangjing, Jiangsu 210002, P.R. China
| |
Collapse
|
6
|
Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements. Invest Radiol 2015; 49:547-60. [PMID: 24651661 DOI: 10.1097/rli.0000000000000054] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study was designed to detail the relation between renal T2* and renal tissue pO2 using an integrated approach that combines parametric magnetic resonance imaging (MRI) and quantitative physiological measurements (MR-PHYSIOL). MATERIALS AND METHODS Experiments were performed in 21 male Wistar rats. In vivo modulation of renal hemodynamics and oxygenation was achieved by brief periods of aortic occlusion, hypoxia, and hyperoxia. Renal perfusion pressure (RPP), renal blood flow (RBF), local cortical and medullary tissue pO2, and blood flux were simultaneously recorded together with T2*, T2 mapping, and magnetic resonance-based kidney size measurements (MR-PHYSIOL). Magnetic resonance imaging was carried out on a 9.4-T small-animal magnetic resonance system. Relative changes in the invasive quantitative parameters were correlated with relative changes in the parameters derived from MRI using Spearman analysis and Pearson analysis. RESULTS Changes in T2* qualitatively reflected tissue pO2 changes induced by the interventions. T2* versus pO2 Spearman rank correlations were significant for all interventions, yet quantitative translation of T2*/pO2 correlations obtained for one intervention to another intervention proved not appropriate. The closest T2*/pO2 correlation was found for hypoxia and recovery. The interlayer comparison revealed closest T2*/pO2 correlations for the outer medulla and showed that extrapolation of results obtained for one renal layer to other renal layers must be made with due caution. For T2* to RBF relation, significant Spearman correlations were deduced for all renal layers and for all interventions. T2*/RBF correlations for the cortex and outer medulla were even superior to those between T2* and tissue pO2. The closest T2*/RBF correlation occurred during hypoxia and recovery. Close correlations were observed between T2* and kidney size during hypoxia and recovery and for occlusion and recovery. In both cases, kidney size correlated well with renal vascular conductance, as did renal vascular conductance with T2*. Our findings indicate that changes in T2* qualitatively mirror changes in renal tissue pO2 but are also associated with confounding factors including vascular volume fraction and tubular volume fraction. CONCLUSIONS Our results demonstrate that MR-PHYSIOL is instrumental to detail the link between renal tissue pO2 and T2* in vivo. Unravelling the link between regional renal T2* and tissue pO2, including the role of the T2* confounding parameters vascular and tubular volume fraction and oxy-hemoglobin dissociation curve, requires further research. These explorations are essential before the quantitative capabilities of parametric MRI can be translated from experimental research to improved clinical understanding of hemodynamics/oxygenation in kidney disorders.
Collapse
|
7
|
Niendorf T, Pohlmann A, Arakelyan K, Flemming B, Cantow K, Hentschel J, Grosenick D, Ladwig M, Reimann H, Klix S, Waiczies S, Seeliger E. How bold is blood oxygenation level-dependent (BOLD) magnetic resonance imaging of the kidney? Opportunities, challenges and future directions. Acta Physiol (Oxf) 2015; 213:19-38. [PMID: 25204811 DOI: 10.1111/apha.12393] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/04/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022]
Abstract
Renal tissue hypoperfusion and hypoxia are key elements in the pathophysiology of acute kidney injury and its progression to chronic kidney disease. Yet, in vivo assessment of renal haemodynamics and tissue oxygenation remains a challenge. Many of the established approaches are invasive, hence not applicable in humans. Blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) offers an alternative. BOLD-MRI is non-invasive and indicative of renal tissue oxygenation. Nonetheless, recent (pre-) clinical studies revived the question as to how bold renal BOLD-MRI really is. This review aimed to deliver some answers. It is designed to inspire the renal physiology, nephrology and imaging communities to foster explorations into the assessment of renal oxygenation and haemodynamics by exploiting the powers of MRI. For this purpose, the specifics of renal oxygenation and perfusion are outlined. The fundamentals of BOLD-MRI are summarized. The link between tissue oxygenation and the oxygenation-sensitive MR biomarker T2∗ is outlined. The merits and limitations of renal BOLD-MRI in animal and human studies are surveyed together with their clinical implications. Explorations into detailing the relation between renal T2∗ and renal tissue partial pressure of oxygen (pO2 ) are discussed with a focus on factors confounding the T2∗ vs. tissue pO2 relation. Multi-modality in vivo approaches suitable for detailing the role of the confounding factors that govern T2∗ are considered. A schematic approach describing the link between renal perfusion, oxygenation, tissue compartments and renal T2∗ is proposed. Future directions of MRI assessment of renal oxygenation and perfusion are explored.
Collapse
Affiliation(s)
- T. Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - A. Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - K. Arakelyan
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - B. Flemming
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - K. Cantow
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - J. Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - D. Grosenick
- Physikalisch-Technische Bundesanstalt (PTB); Berlin Germany
| | - M. Ladwig
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - H. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Klix
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - S. Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin Germany
| | - E. Seeliger
- Institute of Physiology and Center for Cardiovascular Research (CCR); Charité - Universitätsmedizin Berlin; Berlin Germany
| |
Collapse
|
8
|
Neugarten J, Golestaneh L. Blood oxygenation level-dependent MRI for assessment of renal oxygenation. Int J Nephrol Renovasc Dis 2014; 7:421-35. [PMID: 25473304 PMCID: PMC4247132 DOI: 10.2147/ijnrd.s42924] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) has recently emerged as an important noninvasive technique to assess intrarenal oxygenation under physiologic and pathophysiologic conditions. Although this tool represents a major addition to our armamentarium of methodologies to investigate the role of hypoxia in the pathogenesis of acute kidney injury and progressive chronic kidney disease, numerous technical limitations confound interpretation of data derived from this approach. BOLD MRI has been utilized to assess intrarenal oxygenation in numerous experimental models of kidney disease and in human subjects with diabetic and nondiabetic chronic kidney disease, acute kidney injury, renal allograft rejection, contrast-associated nephropathy, and obstructive uropathy. However, confidence in conclusions based on data derived from BOLD MRI measurements will require continuing advances and technical refinements in the use of this technique.
Collapse
Affiliation(s)
- Joel Neugarten
- Renal Division, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ladan Golestaneh
- Renal Division, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
Menzies RI, Zammit-Mangion A, Hollis LM, Lennen RJ, Jansen MA, Webb DJ, Mullins JJ, Dear JW, Sanguinetti G, Bailey MA. An anatomically unbiased approach for analysis of renal BOLD magnetic resonance images. Am J Physiol Renal Physiol 2013; 305:F845-52. [DOI: 10.1152/ajprenal.00113.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Oxygenation defects may contribute to renal disease progression, but the chronology of events is difficult to define in vivo without recourse to invasive methodologies. Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) provides an attractive alternative, but the R2* signal is physiologically complex. Postacquisition data analysis often relies on manual selection of region(s) of interest. This approach excludes from analysis significant quantities of biological information and is subject to selection bias. We present a semiautomated, anatomically unbiased approach to compartmentalize voxels into two quantitatively related clusters. In control F344 rats, low R2* clustering was located predominantly within the cortex and higher R2* clustering within the medulla (70.96 ± 1.48 vs. 79.00 ± 1.50; 3 scans per rat; n = 6; P < 0.01) consistent anatomically with a cortico-medullary oxygen gradient. An intravenous bolus of acetylcholine caused a transient reduction of the R2* signal in both clustered segments ( P < 0.01). This was nitric oxide dependent and temporally distinct from the hemodynamic effects of acetylcholine. Rats were then chronically infused with angiotensin II (60 ng/min) and rescanned 3 days later. Clustering demonstrated a disruption of the cortico-medullary gradient, producing less distinctly segmented mean R2* clusters (71.30 ± 2.00 vs. 72.48 ± 1.27; n = 6; NS). The acetylcholine-induced attenuation of the R2* signal was abolished by chronic angiotensin II infusion, consistent with reduced nitric oxide bioavailability. This global map of oxygenation, defined by clustering individual voxels on the basis of quantitative nearness, might be more robust in defining deficits in renal oxygenation than the absolute magnitude of R2* in small, manually selected regions of interest defined exclusively by anatomical nearness.
Collapse
Affiliation(s)
- Robert I. Menzies
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | | | - Lyam M. Hollis
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - Ross J. Lennen
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - Maurits A. Jansen
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - David J. Webb
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - John J. Mullins
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - James W. Dear
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| | - Guido Sanguinetti
- School of Informatics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A. Bailey
- University/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom; and
| |
Collapse
|
10
|
Pohlmann A, Cantow K, Hentschel J, Arakelyan K, Ladwig M, Flemming B, Hoff U, Persson PB, Seeliger E, Niendorf T. Linking non-invasive parametric MRI with invasive physiological measurements (MR-PHYSIOL): towards a hybrid and integrated approach for investigation of acute kidney injury in rats. Acta Physiol (Oxf) 2013; 207:673-89. [PMID: 23336404 DOI: 10.1111/apha.12065] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/17/2012] [Accepted: 01/16/2013] [Indexed: 01/11/2023]
Abstract
Acute kidney injury of various origins shares a common link in the pathophysiological chain of events: imbalance between renal medullary oxygen delivery and oxygen demand. For in vivo assessment of kidney haemodynamics and oxygenation in animals, quantitative but invasive physiological methods are established. A very limited number of studies attempted to link these invasive methods with parametric Magnetic Resonance Imaging (MRI) of the kidney. Moreover, the validity of parametric MRI (pMRI) as a surrogate marker for renal tissue perfusion and renal oxygenation has not been systematically examined yet. For this reason, we set out to combine invasive techniques and non-invasive MRI in an integrated hybrid setup (MR-PHYSIOL) with the ultimate goal to calibrate, monitor and interpret parametric MR and physiological parameters by means of standardized interventions. Here we present a first report on the current status of this multi-modality approach. For this purpose, we first highlight key characteristics of renal perfusion and oxygenation. Second, concepts for in vivo characterization of renal perfusion and oxygenation are surveyed together with the capabilities of MRI for probing blood oxygenation-dependent tissue stages. Practical concerns evoked by the use of strong magnetic fields in MRI and interferences between MRI and invasive physiological probes are discussed. Technical solutions that balance the needs of in vivo physiological measurements together with the constraints dictated by small bore MR scanners are presented. An early implementation of the integrated MR-PHYSIOL approach is demonstrated including brief interventions of hypoxia and hyperoxia.
Collapse
Affiliation(s)
- A. Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin; Germany
| | - K. Cantow
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - J. Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.); Max Delbrück Center for Molecular Medicine; Berlin; Germany
| | | | - M. Ladwig
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - B. Flemming
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - U. Hoff
- Nephrology and Intensive Care Medicine; Charité - Universitätsmedizin Berlin; Campus Virchow-Klinikum, and Center for Cardiovascular Research; Berlin; Germany
| | - P. B. Persson
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | - E. Seeliger
- Institute of Physiology; Charité - Universitätsmedizin Berlin; Campus Mitte, and Center for Cardiovascular Research; Berlin; Germany
| | | |
Collapse
|
11
|
Pohlmann A, Hentschel J, Fechner M, Hoff U, Bubalo G, Arakelyan K, Cantow K, Seeliger E, Flemming B, Waiczies H, Waiczies S, Schunck WH, Dragun D, Niendorf T. High temporal resolution parametric MRI monitoring of the initial ischemia/reperfusion phase in experimental acute kidney injury. PLoS One 2013; 8:e57411. [PMID: 23468984 PMCID: PMC3585384 DOI: 10.1371/journal.pone.0057411] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/21/2013] [Indexed: 12/12/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury, a consequence of kidney hypoperfusion or temporary interruption of blood flow is a common cause of acute kidney injury (AKI). There is an unmet need to better understand the mechanisms operative during the initial phase of ischemic AKI. Non-invasive in vivo parametric magnetic resonance imaging (MRI) may elucidate spatio-temporal pathophysiological changes in the kidney by monitoring the MR relaxation parameters T2* and T2, which are known to be sensitive to blood oxygenation. The aim of our study was to establish the technical feasibility of fast continuous T2*/T2 mapping throughout renal I/R. MRI was combined with a remotely controlled I/R model and a segmentation model based semi-automated quantitative analysis. This technique enabled the detailed assessment of in vivo changes in all kidney regions during ischemia and early reperfusion. Significant changes in T2* and T2 were observed shortly after induction of renal ischemia and during the initial reperfusion phase. Our study demonstrated for the first time that continuous and high temporal resolution parametric MRI is feasible for in-vivo monitoring and characterization of I/R induced AKI in rats. This technique may help in the identification of the timeline of key events responsible for development of renal damage in hypoperfusion-induced AKI.
Collapse
Affiliation(s)
- Andreas Pohlmann
- Berlin Ultrahigh Field Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Donati OF, Nanz D, Serra AL, Boss A. Quantitative BOLD response of the renal medulla to hyperoxic challenge at 1.5 T and 3.0 T. NMR IN BIOMEDICINE 2012; 25:1133-1138. [PMID: 22290729 DOI: 10.1002/nbm.2781] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/23/2011] [Accepted: 12/23/2011] [Indexed: 05/31/2023]
Abstract
The aim of this study was to gage the magnitude of changes of the apparent renal medullary transverse relaxation time (ΔT(2)) induced by inhalation of pure oxygen (O(2) ) or carbogen (95% O(2) , 5% CO(2) ) versus baseline breathing of room air. Eight healthy volunteers underwent 2D multi-gradient echo MR imaging at 1.5 T and 3.0 T. Parametrical T(2) relaxation time maps were computed and average T(2) was measured in regions of interest placed in the renal medulla and cortex. The largest T(2) changes were measured in the renal medulla, with a relative ∆T(2) of 33.8 ± 22.0% (right medulla) and 34.7 ± 17.6% (left medulla) as compared to room air for oxygen breathing (p > 0.01), and 53.8 ± 23.9% and 53.5 ± 33.9% (p < 0.01) for carbogen breathing, respectively at 3 T. At 1.5 T, the corresponding values were 13.7 ± 18.5% and 24.1 ± 17.1% (p < 0.01) for oxygen breathing and 23.9 ± 17.2% and 38.9 ± 37.6% (p < 0.01) for carbogen breathing. As a result, we showed that renal medullary T(2) times responded strongly to inhalation of hyperoxic gases, which may be attributed to the hypoxic condition of the medulla and subsequent reduction in deoxyhemoglobin.
Collapse
Affiliation(s)
- Olivio F Donati
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Switzerland.
| | | | | | | |
Collapse
|