1
|
Tornifoglio B, Johnston RD, Stone AJ, Kerskens C, Lally C. Microstructural and mechanical insight into atherosclerotic plaques: an ex vivo DTI study to better assess plaque vulnerability. Biomech Model Mechanobiol 2023; 22:1515-1530. [PMID: 36652053 PMCID: PMC10511397 DOI: 10.1007/s10237-022-01671-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/08/2022] [Indexed: 01/19/2023]
Abstract
Non-invasive microstructural characterisation has the potential to determine the stability, or lack thereof, of atherosclerotic plaques and ultimately aid in better assessing plaques' risk to rupture. If linked with mechanical characterisation using a clinically relevant imaging technique, mechanically sensitive rupture risk indicators could be possible. This study aims to provide this link-between a clinically relevant imaging technique and mechanical characterisation within human atherosclerotic plaques. Ex vivo diffusion tensor imaging, mechanical testing, and histological analysis were carried out on human carotid atherosclerotic plaques. DTI-derived tractography was found to yield significant mechanical insight into the mechanical properties of more stable and more vulnerable microstructures. Coupled with insights from digital image correlation and histology, specific failure characteristics of different microstructural arrangements furthered this finding. More circumferentially uniform microstructures failed at higher stresses and strains when compared to samples which had multiple microstructures, like those seen in a plaque cap. The novel findings in this study motivate diagnostic measures which use non-invasive characterisation of the underlying microstructure of plaques to determine their vulnerability to rupture.
Collapse
Affiliation(s)
- B Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R D Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A J Stone
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Medical Physics and Clinical Engineering, St. Vincent's University Hospital, Dublin, Ireland
| | - C Kerskens
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - C Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Alex A, Ayyappan A, Valakada J, Narasimhaiah D, Pitchai S, Sylaja PN. Role of diffusion-weighted imaging in carotid plaque vulnerability assessment. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00776-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
MR plaque imaging is a valuable tool in characterizing carotid atherosclerotic plaque and identifying high-risk features. There are limited data on the role of the widely available single-shot diffusion-weighted imaging (DWI) in plaque characterization along with histological correlation. This study aimed to correlate the plaque characteristics identified by MR imaging in vivo at the level of maximum stenosis with histological plaque characteristics in the postoperative specimen.
Methods
Patients who underwent carotid endarterectomy in a tertiary care center during one and half years were prospectively recruited for non-contrast MR carotid plaque imaging (including single-shot EPI-DWI sequence) in a 3 Tesla MRI using a dedicated carotid coil. An experienced radiologist correlated DWI sequence findings with histopathology of postsurgical sections to confirm the high-risk features.
Results
Twenty-three patients (mean age 66.1 years ± SD 6.25) were evaluated, of which 65% were males and 96% were symptomatic. Apparent diffusion coefficient (ADC) values in location of plaques could differentiate histopathological unstable from stable plaques (0.83 × 10–3 mm2/s vs 1.7 × 10–3 mm2/s; p 0.001), with a sensitivity and specificity of 75% and 79%, respectively, at an ADC cutoff of 1.24 × 10–3 mm2/s. Plaques with and without lipid-rich necrotic core (0.86 × 10–3 mm2/s vs 1.44 × 10–3 mm2/s; p = 0.042) as well as intraplaque hemorrhage could be differentiated (0.751 × 10–3 mm2/s vs 1.352 × 10–3 mm2/s; p 0.037) using the apparent diffusion coefficients.
Conclusion
The widely available single-shot EPI-DWI in assessing plaque characteristics in carotid stenosis is promising and correlated with histopathological features. Diffusion-weighted imaging will be a helpful adjunct in patients when contrast administration is intolerable.
Collapse
|
3
|
Tornifoglio B, Stone AJ, Kerskens C, Lally C. Ex Vivo Study Using Diffusion Tensor Imaging to Identify Biomarkers of Atherosclerotic Disease in Human Cadaveric Carotid Arteries. Arterioscler Thromb Vasc Biol 2022; 42:1398-1412. [PMID: 36172867 PMCID: PMC9592180 DOI: 10.1161/atvbaha.122.318112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study aims to address the potential of ex vivo diffusion tensor imaging to provide insight into the microstructural composition and morphological arrangement of aged human atherosclerotic carotid arteries. METHODS In this study, whole human carotid arteries were investigated both anatomically and by comparing healthy and diseased regions. Nonrigid image registration was used with unsupervised segmentation to investigate the influence of elastin, collagen, cell density, glycosaminoglycans, and calcium on diffusion tensor imaging derived metrics (fractional anisotropy and mean diffusivity). Early stage atherosclerotic features were also investigated in terms of microstructural components and diffusion tensor imaging metrics. RESULTS All vessels displayed a dramatic decrease in fractional anisotropy compared with healthy animal arterial tissue, while the mean diffusivity was sensitive to regions of advanced disease. Elastin content strongly correlated with both fractional anisotropy (r>0.7, P<0.001) and mean diffusivity (r>-0.79, P<0.0002), and the thickened intima was also distinguishable from arterial media by these metrics. CONCLUSIONS These different investigations point to the potential of diffusion tensor imaging to identify characteristics of arterial disease progression, at early and late-stage lesion development.
Collapse
Affiliation(s)
- Brooke Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland
| | - Alan J. Stone
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland.,Department of Medical Physics and Clinical Engineering, St. Vincent’s University Hospital, Dublin, Ireland (A.J.S.)
| | - Christian Kerskens
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Trinity College Institute of Neuroscience (C.K.), Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin (C.L.), Ireland
| |
Collapse
|
4
|
Exploring arterial tissue microstructural organization using non-Gaussian diffusion magnetic resonance schemes. Sci Rep 2021; 11:22247. [PMID: 34782651 PMCID: PMC8593063 DOI: 10.1038/s41598-021-01476-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
The purpose of this study was to characterize the alterations in microstructural organization of arterial tissue using higher-order diffusion magnetic resonance schemes. Three porcine carotid artery models namely; native, collagenase treated and decellularized, were used to estimate the contribution of collagen and smooth muscle cells (SMC) on diffusion signal attenuation using gaussian and non-gaussian schemes. The samples were imaged in a 7 T preclinical scanner. High spatial and angular resolution diffusion weighted images (DWIs) were acquired using two multi-shell (max b-value = 3000 s/mm2) acquisition protocols. The processed DWIs were fitted using monoexponential, stretched-exponential, kurtosis and bi-exponential schemes. Directionally variant and invariant microstructural parametric maps of the three artery models were obtained from the diffusion schemes. The parametric maps were used to assess the sensitivity of each diffusion scheme to collagen and SMC composition in arterial microstructural environment. The inter-model comparison showed significant differences across the considered models. The bi-exponential scheme based slow diffusion compartment (Ds) was highest in the absence of collagen, compared to native and decellularized microenvironments. In intra-model comparison, kurtosis along the radial direction was the highest. Overall, the results of this study demonstrate the efficacy of higher order dMRI schemes in mapping constituent specific alterations in arterial microstructure.
Collapse
|
5
|
Kim SE, Parker DL, Roberts JA, Treiman GS, Alexander M, Baradaran H, de Havenon A, McNally JS. Differentiation of symptomatic and asymptomatic carotid intraplaque hemorrhage using 3D high-resolution diffusion-weighted stack of stars imaging. NMR IN BIOMEDICINE 2021; 34:e4582. [PMID: 34296793 DOI: 10.1002/nbm.4582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Ischemic events related to carotid disease are far more strongly associated with plaque instability than stenosis. 3D high-resolution diffusion-weighted (DW) imaging can provide quantitative diffusion measurements on carotid atherosclerosis and may improve detection of vulnerable intraplaque hemorrhage (IPH). The 3D DW-stack of stars (SOS) sequence was implemented with 3D SOS acquisition combined with DW preparation. After simulation of signals created from 3D DW-SOS, phantom studies were performed. Three healthy subjects and 20 patients with carotid disease were recruited. Apparent diffusion coefficient (ADC) values were statistically analyzed on three subgroups by using a two-group comparison Wilcoxon-Mann-Whitney U test with p values less than 0.05: symptomatic versus asymptomatic; IPH-positive versus IPH-negative; and IPH-positive symptomatic versus asymptomatic plaques to determine the relationship with plaque vulnerability. ADC values calculated by 3D DW-SOS provided values similar to those calculated from other techniques. Mean ADC of symptomatic plaque was significantly lower than asymptomatic plaque (0.68 ± 0.18 vs. 0.98 ± 0.16 x 10-3 mm2 /s, p < 0.001). ADC was also significantly lower in IPH-positive versus IPH-negative plaque (0.68 ± 0.13 vs. 1.04 ± 0.11 x 10-3 mm2 /s, p < 0.001). Additionally, ADC was significantly lower in symptomatic versus asymptomatic IPH-positive plaque (0.57 ± 0.09 vs. 0.75 ± 0.11 x 10-3 mm2 /s, p < 0.001). Our results provide strong evidence that ADC measurements from 3D DW-SOS correlate with the symptomatic status of extracranial internal carotid artery plaque. Further, ADC improved discrimination of symptomatic plaque in IPH. These data suggest that diffusion characteristics may improve detection of destabilized plaque leading to elevated stroke risk.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Dennis L Parker
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - John A Roberts
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Gerald S Treiman
- Department of Veterans Affairs, VASLCHCS, Salt Lake City, Utah, USA
| | - Matthew Alexander
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Hediyeh Baradaran
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Adam de Havenon
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - J Scott McNally
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
6
|
Wang T, Qiao H, Xu H, Xu D, Liu G, Yuan C, Zhao X. Identification of carotid non-hemorrhagic lipid-rich necrotic core by magnetization-prepared rapid acquisition gradient-echo imaging: Validation by contrast-enhanced T1 weighted imaging. Magn Reson Imaging 2019; 63:155-158. [PMID: 31425806 DOI: 10.1016/j.mri.2019.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/08/2019] [Accepted: 08/15/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Tao Wang
- Department of Neurosurgery, Peking University Third Hospital, Beijing, China
| | - Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Huimin Xu
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dongxiang Xu
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Gaifen Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chun Yuan
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.
| |
Collapse
|
7
|
Ota H, Tamura H, Itabashi R, Yazawa Y, Nakamura Y, Hisamatsu K, Takamatsu M, Endo H, Niizuma K, Enomoto Y, Nagasaka T, Kajita K, Watanabe M, Yoshimura S, Yuan C. Quantitative characterization of carotid plaque components using MR apparent diffusion coefficients and longitudinal relaxation rates at 3T: A comparison with histology. J Magn Reson Imaging 2018; 48:1657-1667. [DOI: 10.1002/jmri.26216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/22/2018] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hideki Ota
- Department of Diagnostic Radiology; Tohoku University Hospital; Miyagi Japan
| | - Hajime Tamura
- Division of Medical Physics; Tohoku University Graduate School of Medicine; Miyagi Japan
| | - Ryo Itabashi
- Department of Stroke Neurology; Kohnan Hospital; Miyagi Japan
| | - Yukako Yazawa
- Department of Stroke Neurology; Kohnan Hospital; Miyagi Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Faculty of Medicine; Tohoku Medical and Pharmaceutical University, Miyagi, Japan; Miyagi Japan
| | - Kenji Hisamatsu
- Pathology Division; Gifu University Hospital; Gifu Japan
- Department of Tumor Pathology; Gifu University Graduate School of Medicine; Gifu Japan
| | - Manabu Takamatsu
- Department of Pathology; The Cancer Institute Hospital, Japanese Foundation for Cancer Research; Tokyo Japan
| | - Hidenori Endo
- Department of Neurosurgery; Tohoku University Graduate School of Medicine; Miyagi Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgery; Tohoku University Graduate School of Medicine; Miyagi Japan
| | - Yukiko Enomoto
- Department of Neurosurgery; Gifu University Graduate School of Medicine; Gifu Japan
| | - Tatsuo Nagasaka
- Department of Radiological Technology; Tohoku University Hospital; Miyagi Japan
| | - Kimihiro Kajita
- Department of Radiology service; Gifu University Hospital; Gifu Japan
| | - Mika Watanabe
- Department of Pathology; Tohoku University Hospital; Miyagi Japan
| | | | - Chun Yuan
- Department of Radiology; University of Washington; Seattle Washington USA
| |
Collapse
|
8
|
Identification of carotid lipid-rich necrotic core and calcification by 3D magnetization-prepared rapid acquisition gradient-echo imaging. Magn Reson Imaging 2018; 53:71-76. [PMID: 30021124 DOI: 10.1016/j.mri.2018.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE This study sought to investigate the feasibility of three-dimensional MPRAGE in identifying the lipid-rich necrotic core (LRNC) and calcification (CA) of carotid atherosclerotic plaques. MATERIALS AND METHODS Twelve patients (mean age 68.4 ± 11.8 years; 7 males) with carotid atherosclerotic plaques on ultrasound were included and underwent multicontrast magnetic resonance (MR) vessel wall imaging. The contrast enhanced T1W (CE-T1W) images were considered as reference for identifying LRNC. The signal intensity of LRNC, CA, sterno-cleidomastoid muscle and fibrous tissue (FT) was measured on CE-T1W, T1W, T2W, and MPRAGE images, respectively. The relative signal intensity (rSI) of LRNC and CA against muscle or FT was compared among four sequences. Area under the curve (AUC) of rSIs of LRNC, CA and FT against muscle on MPRAGE, T1W and T2W images in discriminating the LRNC or CA from FT and the other plaque component was calculated. RESULTS Of 352 slices, 88 (25.0%) had LRNC, 31 (8.8%) had CA, 14 (4.0%) had both LRNC and CA, and 247 (70.2%) had no components. Among four imaging sequences, MPRAGE images showed the lowest rSI of LRNC (0.34 ± 0.18) and CA (0.20 ± 0.16) against muscle, followed by T1W (0.48 ± 0.18 and 0.33 ± 0.21), CE-T1W (0.58 ± 0.23 and 0.40 ± 0.21) and T2W (0.71 ± 0.47 and 0.43 ± 0.40) images. In addition, the MPRAGE images showed the lowest rSI of LRNC (0.57 ± 0.26) and CA (0.33 ± 0.23) against FT. MPRAGE showed greater AUC than T2W and T1W in discriminating the LRNC (0.827 vs. 0.703 vs. 0.635) and CA (0.917 vs. 0.838 vs. 0.825). CONCLUSION MPRAGE sequence might be a potential non-contrast enhanced imaging tool for identification of carotid LRNC and CA.
Collapse
|
9
|
Shahid SS, Gaul RT, Kerskens C, Flamini V, Lally C. Quantifying the ultrastructure of carotid arteries using high-resolution micro-diffusion tensor imaging—comparison of intact versus open cut tissue. ACTA ACUST UNITED AC 2017; 62:8850-8868. [DOI: 10.1088/1361-6560/aa9159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Zhang Q, Coolen BF, Versluis MJ, Strijkers GJ, Nederveen AJ. Diffusion-prepared stimulated-echo turbo spin echo (DPsti-TSE): An eddy current-insensitive sequence for three-dimensional high-resolution and undistorted diffusion-weighted imaging. NMR IN BIOMEDICINE 2017; 30:e3719. [PMID: 28295736 DOI: 10.1002/nbm.3719] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/10/2017] [Accepted: 02/04/2017] [Indexed: 06/06/2023]
Abstract
In this study, we present a new three-dimensional (3D), diffusion-prepared turbo spin echo sequence based on a stimulated-echo read-out (DPsti-TSE) enabling high-resolution and undistorted diffusion-weighted imaging (DWI). A dephasing gradient in the diffusion preparation module and rephasing gradients in the turbo spin echo module create stimulated echoes, which prevent signal loss caused by eddy currents. Near to perfect agreement of apparent diffusion coefficient (ADC) values between DPsti-TSE and diffusion-weighted echo planar imaging (DW-EPI) was demonstrated in both phantom transient signal experiments and phantom imaging experiments. High-resolution and undistorted DPsti-TSE was demonstrated in vivo in prostate and carotid vessel wall. 3D whole-prostate DWI was achieved with four b values in only 6 min. Undistorted ADC maps of the prostate peripheral zone were obtained at low and high imaging resolutions with no change in mean ADC values [(1.60 ± 0.10) × 10-3 versus (1.60 ± 0.02) × 10-3 mm2 /s]. High-resolution 3D DWI of the carotid vessel wall was achieved in 12 min, with consistent ADC values [(1.40 ± 0.23) × 10-3 mm2 /s] across different subjects, as well as slice locations through the imaging volume. This study shows that DPsti-TSE can serve as a robust 3D diffusion-weighted sequence and is an attractive alternative to the traditional two-dimensional DW-EPI approaches.
Collapse
Affiliation(s)
- Qinwei Zhang
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Kerwin WS, Miller Z, Yuan C. Imaging of the high-risk carotid plaque: magnetic resonance imaging. Semin Vasc Surg 2017; 30:54-61. [PMID: 28818259 DOI: 10.1053/j.semvascsurg.2017.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emergence of the concept of high-risk atherosclerotic plaque has led to considerable interest in noninvasive imaging techniques to identify high-risk features before clinical sequelae. For plaques in the carotid arteries, magnetic resonance imaging has undergone considerable histologic validation to link imaging features to indicators of plaque instability, including plaque burden, intraplaque hemorrhage, fibrous cap disruption, lipid rich necrotic core, and calcification. Recently introduced imaging technologies, especially those focused on three-dimensional imaging sequences, are now poised for integration into the clinical workup of patients with suspected carotid atherosclerosis. The purpose of this article is to review the carotid plaque magnetic resonance imaging techniques that are most ready for integration into the clinic.
Collapse
Affiliation(s)
- William S Kerwin
- University of Washington Vascular Imaging Lab, Department of Radiology, 850 Republican Street, Seattle, WA 98109
| | - Zach Miller
- University of Washington Vascular Imaging Lab, Department of Radiology, 850 Republican Street, Seattle, WA 98109
| | - Chun Yuan
- University of Washington Vascular Imaging Lab, Department of Radiology, 850 Republican Street, Seattle, WA 98109.
| |
Collapse
|
12
|
Opriessnig P, Mangge H, Stollberger R, Deutschmann H, Reishofer G. In vivo cardiovascular magnetic resonance of 2D vessel wall diffusion anisotropy in carotid arteries. J Cardiovasc Magn Reson 2016; 18:81. [PMID: 27876066 PMCID: PMC5120527 DOI: 10.1186/s12968-016-0304-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/02/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diffusion weighted (DW) cardiovascular magnetic resonance (CMR) has shown great potential to discriminate between healthy and diseased vessel tissue by evaluating the apparent diffusion coefficient (ADC) along the arterial axis. Recently, ex vivo studies on porcine arteries utilizing diffusion tensor imaging (DTI) revealed a circumferential fiber orientation rather than an organization in axial direction, suggesting dominant diffusion perpendicular to the slice direction. In the present study, we propose a method to access tangential and radial diffusion of carotids in vivo by utilizing a pulse sequence that enables high resolution DW imaging in combination with a two-dimensional (2D) diffusion gradient direction sampling scheme perpendicular to the longitudinal axis of the artery. METHODS High resolution DTI of 12 healthy male volunteers (age: 25-60 years) was performed on one selected axial slice using a read-out segmented EPI (rs-EPI) sequence on a 3T MR scanner. RESULTS It was found consistently for all 12 volunteers, that the tangential component as the principle direction of diffusion. Mean vessel wall fractional anisotropy (FA) values ranged from 0.7 for the youngest to 0.56 for the oldest participant. Linear regression analysis between the FA values and volunteers age revealed a highly significant (P < 0.01) linear relationship with an adjusted R2 of 0.52. In addition, a linear trend (P < 0.1) could be observed between radial diffusivity (RD) and age. CONCLUSION These results point to FA being a sensitive parameter able to capture changes in the vascular architecture with age. In detail, the data demonstrate a decrease in FA with advancing age indicating possible alterations of tissue microstructural integrity. Moreover, analyzing 2D diffusion tensor directions is sufficient and applicable in a clinical setup concerning the overall scan time.
Collapse
Affiliation(s)
- Peter Opriessnig
- Clinical Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Rudolf Stollberger
- Institute of Medical Engineering, Graz University of Technology, Stremayrgasse 16/III, A-8010 Graz, Austria
| | - Hannes Deutschmann
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, A-8036 Graz, Austria
| | - Gernot Reishofer
- Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, A-8036 Graz, Austria
| |
Collapse
|
13
|
Qiao H, He Q, Chen Z, Xu D, Huang L, He L, Jiang L, Li R, Luo J, Yuan C, Zhao X. Identification of early atherosclerotic lesions in carotid arteries with quantitative characteristics measured by 3D MRI. J Magn Reson Imaging 2016; 44:1270-1276. [PMID: 27079951 DOI: 10.1002/jmri.25264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To evaluate the usefulness of quantitative characteristics of morphology and signal intensity of arterial wall measured by 3D multicontrast magnetic resonance vessel wall imaging (MRVWI) in identification of carotid early atherosclerosis (CEAS). MATERIALS AND METHODS In all, 61 older subjects (mean age 71.8 ± 5.6 years old; 25 males) without cardiovascular symptoms in the last 6 months were recruited. The carotid arteries without advanced plaque features on 3.0T MRI were included for analysis. Ultrasound imaging was used as a reference to identify CEAS. The morphological parameters including lumen area (LA), wall area (WA), wall thickness (WT), and normalized wall index (NWI = WA/[WA+LA] × 100%) and the signal intensity on 3.0T MR T2 -weighted images (T2 SI) of the carotid arterial wall were measured. Three regression models were built to identify CEAS with the following parameters: Model 1 with both morphological and T2 SI parameters; Model 2 with T2 SI parameters; and Model 3 with morphological parameters. All models were adjusted for age and sex. Area under the curve (AUC) was calculated to validate models. RESULTS Of the 86 carotid arteries without advanced plaques, 47 (54.7%) were found to have early plaques determined by ultrasound. Among three regression models, Model 1 showed the highest AUC values in identifying CEAS (left: AUC = 0.856, P < 0.001; right: AUC = 0.867, P < 0.001), followed by Model 2 (left: AUC = 0.843, P < 0.001; right: AUC = 0.798, P = 0.001), and Model 3 (left: AUC = 0.790, P = 0.002; right: AUC = 0.806, P < 0.001). CONCLUSION The combination of morphology and normalized T2 SI of arterial wall measured by MRVWI is more effective than each characteristic alone in identification of CEAS. J. Magn. Reson. Imaging 2016;44:1270-1276.
Collapse
Affiliation(s)
- Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Qiong He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Zhensen Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Dongxiang Xu
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Lingyun Huang
- Clinical Sites Research Program, Philips Research China, Shanghai, China
| | - Le He
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Li Jiang
- Philips Healthcare (Suzhou), Jiangsu, China
| | - Rui Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Jianwen Luo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Chun Yuan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.,Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.
| |
Collapse
|
14
|
Yao B, Yang L, Wang G, Shi H, Wang S, Li H, Chen W, Chan Q. Diffusion measurement of intraplaque hemorrhage and intramural hematoma using diffusion weighted MRI at 3T in cervical artery. Eur Radiol 2015; 26:3737-43. [PMID: 26670319 DOI: 10.1007/s00330-015-4149-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Bin Yao
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Li Yang
- Department of Radiology, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Guangbin Wang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, People's Republic of China.
| | - Honglu Shi
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Shanshan Wang
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Huihua Li
- Shandong Medical Imaging Research Institute, Shandong University, Jinan, 250021, Shandong, People's Republic of China
| | - Weibo Chen
- Philips Healthcare, Shanghai, People's Republic of China
| | - Queenie Chan
- Philips Healthcare, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Honndorf VS, Schmidt H, Wehrl HF, Wiehr S, Ehrlichmann W, Quintanilla-Martinez L, Barjat H, Ricketts SA, Pichler BJ. Quantitative correlation at the molecular level of tumor response to docetaxel by multimodal diffusion-weighted magnetic resonance imaging and [¹⁸F]FDG/[¹⁸F]FLT positron emission tomography. Mol Imaging 2015; 13. [PMID: 25430886 DOI: 10.2310/7290.2014.00045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We aimed to quantitatively characterize the treatment effects of docetaxel in the HCT116 xenograft mouse model, applying diffusion-weighted magnetic resonance imaging (MRI) and positron emission tomography (PET) using 2-deoxy-2-[¹⁸F]fluoro-d-glucose ([¹⁸F]FDG) and 3'-deoxy-3'-[¹⁸F]-fluorothymidine ([¹⁸F]FLT). Mice were imaged at four time points over 8 days. Docetaxel (15 mg/kg) was administered after a baseline scan. Voxel-wise scatterplots of PET and apparent diffusion coefficient (ADC) data of tumor volumes were evaluated with a threshold cluster analysis and compared to histology (GLUT1, GLUT3, Ki67, activated caspase 3a). Compared to the extensive tumor growth observed in the vehicle-treated group (from 0.32 ± 0.21 cm³ to 0.69 ± 0.40 cm³), the administration of docetaxel led to tumor growth stasis (from 0.32 ± 0.20 cm³ to 0.45 ± 0.23 cm³). The [¹⁸F]FDG/ADC cluster analysis and the evaluation of peak histogram values revealed a significant treatment effect matching histology as opposed to [¹⁸F]FLT/ADC. [¹⁸F]FLT uptake and the Ki67 index were not in good agreement. Our voxel-based cluster analysis uncovered treatment effects not seen in the separate inspection of PET and MRI data and may be used as an independent analysis tool. [¹⁸F]FLT/ADC cluster analysis could still point out the treatment effect; however, [¹⁸F]FDG/ADC reflected the histology findings in higher agreement.
Collapse
|
16
|
Abstract
Ex vivo MRI may aid in the evaluation of surgical specimens, and provide valuable information regarding the micro-anatomy of mammary/breast cancer. The use of ex vivo MRI to study mouse mammary cancer would be enhanced if there is a strong correlation between parameters derived from in vivo and ex vivo scans. Here, we report the correlation between apparent diffusion coefficient (ADC) and T2 values measured in vivo and ex vivo in mouse mammary glands with in situ cancers (mammary intraepithelial neoplasia (MIN)) and invasive cancers (those which spread outside the ducts into surrounding tissue). MRI experiments were performed on the Polyoma middle T oncoprotein breast cancer mouse model (n = 15) in a 9.4T scanner. For in vivo experiments, T2-weighted (T2W) images were acquired to identify abnormal regions, then ADC and T2 values were measured for nine selected slices. For ex vivo experiments, a midline incision was made along the spine, and then skin, glands, and tumors were gently peeled from the body. Tissue was fixed in formalin, placed around a mouse-sized sponge, and sutured together mimicking the geometry of the gland when attached to the mouse. The same pulse sequences used for in vivo experiments were repeated for ex vivo scans at room temperature. Regions of interest were manually traced on T2W images defining features that could be identified on in vivo and ex vivo images. The results demonstrate a strong positive correlations between in vivo and ex vivo invasive cancers for ADC (r = 0.89, p <0.0001) and T2 (r = 0.89, p <0.0001) values; and weak to moderate positive correlations between in vivo and ex vivo in situ cancers for ADC (r = 0.61, p <0.0001) and T2 (r = 0.79, p <0.0001) values. The average ex vivo ADC value was about 54% of the in vivo value; and the average ex vivo T2 was similar to the in vivo value for cancers. Although motion, fixation, and temperature differences affect ADC and T2, these results show a reliable relationship between ADC and T2in vivo and ex vivo. As a result ex vivo images can provide valuable information with clinical and research applications.
Collapse
|
17
|
Xie Y, Yu W, Fan Z, Nguyen C, Bi X, An J, Zhang T, Zhang Z, Li D. High resolution 3D diffusion cardiovascular magnetic resonance of carotid vessel wall to detect lipid core without contrast media. J Cardiovasc Magn Reson 2014; 16:67. [PMID: 25238168 PMCID: PMC4165995 DOI: 10.1186/s12968-014-0067-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/12/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Without the need of contrast media, diffusion-weighted imaging (DWI) has shown great promise for accurate detection of lipid-rich necrotic core (LRNC), a well-known feature of vulnerable plaques. However, limited resolution and poor image quality in vivo with conventional single-shot diffusion-weighted echo planar imaging (SS-DWEPI) has hindered its clinical application. The aim of this work is to develop a diffusion-prepared turbo-spin-echo (DP-TSE) technique for carotid plaque characterization with 3D high resolution and improved image quality. METHODS Unlike SS-DWEPI where the diffusion encoding is integrated in the EPI framework, DP-TSE uses a diffusion encoding module separated from the TSE framework, allowing for segmented acquisition without the sensitivity to phase errors. The interleaved, motion-compensated sequence was designed to enable 3D black-blood DWI of carotid arteries with sub-millimeter resolution. The sequence was tested on 12 healthy subjects and compared with SS-DWEPI for image quality, vessel wall visibility, and vessel wall thickness measurements. A pilot study was performed on 6 patients with carotid plaques using this sequence and compared with conventional contrast-enhanced multi-contrast 2D TSE as the reference. RESULTS DP-TSE demonstrated advantages over SS-DWEPI for resolution and image quality. In the healthy subjects, vessel wall visibility was significantly higher with diffusion-prepared TSE (p < 0.001). Vessel wall thicknesses measured from diffusion-prepared TSE were on average 35% thinner than those from the EPI images due to less distortion and partial volume effect (p < 0.001). ADC measurements of healthy carotid vessel wall are 1.53 ± 0.23 × 10-3 mm2/s. In patients the mean ADC measurements in the LRNC area were significantly lower (0.60 ± 0.16 × 10-3 mm2/s) than those of the fibrous plaque tissue (1.27 ± 0.29 × 10-3 mm2/s, p < 0.01). CONCLUSIONS Diffusion-prepared CMR allows, for the first time, 3D DWI of the carotid arterial wall in vivo with high spatial resolution and improved image quality over SS-DWEPI. It can potentially detect LRNC without the use of contrast agents, allowing plaque characterization in patients with renal insufficiency.
Collapse
Affiliation(s)
- Yibin Xie
- />Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
- />Department of Bioengineering, University of California, Los Angeles, CA USA
| | - Wei Yu
- />Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhaoyang Fan
- />Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Christopher Nguyen
- />Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
- />Department of Bioengineering, University of California, Los Angeles, CA USA
| | - Xiaoming Bi
- />MR R&D, Siemens Healthcare, Los Angeles, CA USA
| | - Jing An
- />MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Tianjing Zhang
- />MR Collaborations NE Asia, Siemens Healthcare, Beijing, China
| | - Zhaoqi Zhang
- />Department of Radiology, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Debiao Li
- />Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA USA
- />Department of Bioengineering, University of California, Los Angeles, CA USA
| |
Collapse
|
18
|
Abstract
OBJECTIVE Although MRI is widely used to observe atherosclerosis impacts on the vessel lumen, MRI also depicts the size of the plaque itself, its composition, and plaque inflammation, providing information beyond simple stenosis. This article summarizes the state of evidence for a clinical role for MRI of carotid atherosclerosis. CONCLUSION MRI of carotid atherosclerosis has a proven role in pharmaceutical trials and may improve patient management once large-scale clinical trials have been completed.
Collapse
|
19
|
Phinikaridou A, Andia ME, Saha P, Modarai B, Smith A, Botnar RM. In vivo magnetization transfer and diffusion-weighted magnetic resonance imaging detects thrombus composition in a mouse model of deep vein thrombosis. Circ Cardiovasc Imaging 2013; 6:433-440. [PMID: 23564561 DOI: 10.1161/circimaging.112.000077] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Deep vein thrombosis remains a major health problem necessitating accurate diagnosis. Thrombolysis is associated with significant morbidity and is effective only for the treatment of unorganized thrombus. We tested the feasibility of in vivo magnetization transfer (MT) and diffusion-weighted magnetic resonance imaging to detect thrombus organization in a murine model of deep vein thrombosis. METHODS AND RESULTS Deep vein thrombosis was induced in the inferior vena cava of male BALB/C mice. Magnetic resonance imaging was performed at days 1, 7, 14, 21, and 28 after thrombus induction using MT, diffusion-weighted, inversion-recovery, and T1-mapping protocols. Delayed enhancement and T1 mapping were repeated 2 hours after injection of a fibrin contrast agent. Finally, excised thrombi were used for histology. We found that MT and diffusion-weighted imaging can detect histological changes associated with thrombus aging. MT rate (MTR) maps and percentage of MT rate (%MTR) allowed visualization and quantification of the thrombus protein content, respectively. The %MTR increased with thrombus organization and was significantly higher at days 14, 21, and 28 after thrombus induction (days 1, 7, 14, 21, 28: %MTR=2483±451, 2079±1210, 7029±2490, 10 295±4356, 32 994±25 449; PANOVA<0.05). There was a significant positive correlation between the %MTR and the histological protein content of the thrombus (r=0.70; P<0.05). The apparent diffusion coefficient was lower in erythrocyte-rich and collagen-rich thrombus (0.72±0.10 and 0.69±0.05 [×10(-3) mm(2)/s]). Thrombus at days 7 and 14 had the highest apparent diffusion coefficient values (0.95±0.09 and 1.10±0.18 [×10(-3) mm(2)/s]). CONCLUSIONS MT and diffusion-weighted magnetic resonance imaging sequences are promising for the staging of thrombus composition and could be useful in guiding medical intervention.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| | - Marcelo E Andia
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| | - Prakash Saha
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| | - Bijan Modarai
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| | - Alberto Smith
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| | - René M Botnar
- Division of Imaging Science and Biomedical Engineering (A.P., M.E.A., R.M.B.), Cardiovascular Division, Academic Department of Surgery (P.S., B.M., A.S.), Cardiovascular Division, BHF Centre of Excellence (A.P., P.S., A.S., R.M.B.), Wellcome Trust and EPSRC Medical Engineering Center (R.M.B.), King's College London, London, UK; and Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile (M.E.A.)
| |
Collapse
|
20
|
Phinikaridou A, Andia ME, Shah AM, Botnar RM. Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in vivo cardiovascular biology. Am J Physiol Heart Circ Physiol 2012; 303:H1397-410. [PMID: 23064836 DOI: 10.1152/ajpheart.00583.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular imaging of the cardiovascular system heavily relies on the development of new imaging probes and technologies to facilitate visualization of biological processes underlying or preceding disease. Molecular imaging is a highly active research discipline that has seen tremendous growth over the past decade. It has broadened our understanding of oncologic, neurologic, and cardiovascular diseases by providing new insights into the in vivo biology of disease progression and therapeutic interventions. As it allows for the longitudinal evaluation of biological processes, it is ideally suited for monitoring treatment response. In this review, we will concentrate on the major accomplishments and advances in the field of molecular imaging of atherosclerosis and myocardial infarction with a special focus on magnetic resonance imaging.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Science and Biomedical Engineering, King's College London, United Kingdom.
| | | | | | | |
Collapse
|
21
|
Phinikaridou A, Qiao Y, Giordano N, Hamilton JA. Detection of thrombus size and protein content by ex vivo magnetization transfer and diffusion weighted MRI. J Cardiovasc Magn Reson 2012; 14:45. [PMID: 22731842 PMCID: PMC3419091 DOI: 10.1186/1532-429x-14-45] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 06/06/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To utilize a rabbit model of plaque disruption to assess the accuracy of different magnetic resonance sequences [T1-weighted (T1W), T2-weighted (T2W), magnetization transfer (MT) and diffusion weighting (DW)] at 11.7 T for the ex vivo detection of size and composition of thrombus associated with disrupted plaques. METHODS Atherosclerosis was induced in the aorta of male New Zealand White rabbits (n = 17) by endothelial denudation and high-cholesterol diet. Subsequently, plaque disruption was induced by pharmacological triggering. Segments of infra-renal aorta were excised fixed in formalin and examined by ex vivo magnetic resonance imaging (MRI) at 11.7 T and histology. RESULTS MRI at 11.7 T showed that: (i) magnetization transfer contrast (MTC) and diffusion weighted images (DWI) detected thrombus with higher sensitivity compared to T1W and T2W images [sensitivity: MTC = 88.2%, DWI = 76.5%, T1W = 66.6% and T2W = 43.7%, P < 0.001]. Similarly, the contrast-to-noise (CNR) between the thrombus and the underlying plaque was superior on the MTC and DWI images [CNR: MTC = 8.5 ± 1.1, DWI = 6.0 ± 0.8, T1W = 1.8 ± 0.5, T2W = 3.0 ± 1.0, P < 0.001]; (ii) MTC and DWI provided a more accurate detection of thrombus area with histology as the gold-standard [underestimation of 6% (MTC) and 17.6% (DWI) compared to an overestimation of thrombus area of 53.7% and 46.4% on T1W and T2W images, respectively]; (iii) the percent magnetization transfer rate (MTR) correlated with the fibrin (r = 0.73, P = 0.003) and collagen (r = 0.9, P = 0.004) content of the thrombus. CONCLUSIONS The conspicuity of the thrombus was increased on MTC and DW compared to T1W and T2W images. Changes in the %MTR and apparent diffusion coefficient can be used to identify the organization stage of the thrombus.
Collapse
Affiliation(s)
- Alkystis Phinikaridou
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | - Ye Qiao
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Nick Giordano
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - James A Hamilton
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|