1
|
Carnevale L, Lembo G. Imaging the cerebral vasculature at different scales: translational tools to investigate the neurovascular interfaces. Cardiovasc Res 2025; 120:2373-2384. [PMID: 39082279 DOI: 10.1093/cvr/cvae165] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/26/2024] [Accepted: 05/23/2024] [Indexed: 04/09/2025] Open
Abstract
The improvements in imaging technology opened up the possibility to investigate the structure and function of cerebral vasculature and the neurovascular unit with unprecedented precision and gaining deep insights not only on the morphology of the vessels but also regarding their function and regulation related to the cerebral activity. In this review, we will dissect the different imaging capabilities regarding the cerebrovascular tree, the neurovascular unit, the haemodynamic response function, and thus, the vascular-neuronal coupling. We will discuss both clinical and preclinical setting, with a final discussion on the current scenery in cerebrovascular imaging where magnetic resonance imaging and multimodal microscopy emerge as the most potent and versatile tools, respectively, in the clinical and preclinical context.
Collapse
Affiliation(s)
- Lorenzo Carnevale
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
| | - Giuseppe Lembo
- Department of AngioCardioNeurology and Translational Medicine, I.R.C.C.S. INM Neuromed, Via dell'Elettronica, 86077 Pozzilli, IS, Italy
- Department of Molecular Medicine, 'Sapienza' University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy
| |
Collapse
|
2
|
McNabb CB, Driver ID, Hyde V, Hughes G, Chandler HL, Thomas H, Allen C, Messaritaki E, Hodgetts CJ, Hedge C, Engel M, Standen SF, Morgan EL, Stylianopoulou E, Manolova S, Reed L, Ploszajski M, Drakesmith M, Germuska M, Shaw AD, Mueller L, Rossiter H, Davies-Jenkins CW, Lancaster T, Evans CJ, Owen D, Perry G, Kusmia S, Lambe E, Partridge AM, Cooper A, Hobden P, Lu H, Graham KS, Lawrence AD, Wise RG, Walters JTR, Sumner P, Singh KD, Jones DK. WAND: A multi-modal dataset integrating advanced MRI, MEG, and TMS for multi-scale brain analysis. Sci Data 2025; 12:220. [PMID: 39915473 PMCID: PMC11803114 DOI: 10.1038/s41597-024-04154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/18/2024] [Indexed: 02/09/2025] Open
Abstract
This paper introduces the Welsh Advanced Neuroimaging Database (WAND), a multi-scale, multi-modal imaging dataset comprising in vivo brain data from 170 healthy volunteers (aged 18-63 years), including 3 Tesla (3 T) magnetic resonance imaging (MRI) with ultra-strong (300 mT/m) magnetic field gradients, structural and functional MRI and nuclear magnetic resonance spectroscopy at 3 T and 7 T, magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS), together with trait questionnaire and cognitive data. Data are organised using the Brain Imaging Data Structure (BIDS). In addition to raw data, we provide brain-extracted T1-weighted images, and quality reports for diffusion, T1- and T2-weighted structural data, and blood-oxygen level dependent functional tasks. Reasons for participant exclusion are also included. Data are available for download through our GIN repository, a data access management system designed to reduce storage requirements. Users can interact with and retrieve data as needed, without downloading the complete dataset. Given the depth of neuroimaging phenotyping, leveraging ultra-high-gradient, high-field MRI, MEG and TMS, this dataset will facilitate multi-scale and multi-modal investigations of the healthy human brain.
Collapse
Affiliation(s)
- Carolyn B McNabb
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK.
| | - Ian D Driver
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Vanessa Hyde
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Garin Hughes
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Hannah L Chandler
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Hannah Thomas
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | | | - Eirini Messaritaki
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Carl J Hodgetts
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- Department of Psychology, Royal Holloway, University of London, Egham, UK
| | - Craig Hedge
- School of Psychology, Aston University, Birmingham, UK
| | - Maria Engel
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Sophie F Standen
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Emma L Morgan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Elena Stylianopoulou
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Svetla Manolova
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Lucie Reed
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Matthew Ploszajski
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Michael Germuska
- Department of Radiology, University of California Davis Medical Center, Sacramento, California, USA
| | - Alexander D Shaw
- Washington Singer Laboratories, University of Exeter, Exeter, UK
| | - Lars Mueller
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Holly Rossiter
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Christopher W Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Kreiger Institute, Baltimore, Maryland, USA
| | - Tom Lancaster
- Department of Psychology, University of Bath, Bath, UK
| | - C John Evans
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - David Owen
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Gavin Perry
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Slawomir Kusmia
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- IBM Polska Sp. z o. o., Department of Content Design, Cracow, Poland
| | - Emily Lambe
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Adam M Partridge
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- University of Sheffield, Research Services, New Spring House, 231 Glossop Road, Sheffield, S10 2GW, UK
| | - Allison Cooper
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Peter Hobden
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Kreiger Institute, Baltimore, Maryland, USA
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- School of Philosophy, Psychology and Language Sciences, Dugald Stewart Building, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD, UK
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - James T R Walters
- School of Medicine, Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Petroc Sumner
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Cohen AD, Moia S, Pike GB, Caballero-Gaudes C, Wang Y. Resting state BOLD-perfusion coupling patterns using multiband multi-echo pseudo-continuous arterial spin label imaging. Sci Rep 2025; 15:2108. [PMID: 39814790 PMCID: PMC11735624 DOI: 10.1038/s41598-024-81305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/26/2024] [Indexed: 01/18/2025] Open
Abstract
The alteration of neurovascular coupling (NVC), where acute localized blood flow increases following neural activity, plays a key role in several neurovascular processes including aging and neurodegeneration. While not equivalent to NVC, the coupling between simultaneously measured cerebral blood flow (CBF) with arterial spin labeling (ASL) and blood oxygenation dependent (BOLD) signals, can also be affected. Moreover, the acquisition of BOLD data allows the assessment of resting state (RS) fMRI metrics. In this study a multiband, multi-echo (MBME) pseudo-continuous ASL (pCASL) sequence was used to collect simultaneous BOLD and ASL data in a group of healthy control subjects, and the patterns of BOLD-CBF coupling were evaluated. Coupling was also correlated with the BOLD RS measures. The variability, reproducibility, and reliability of the metrics were also computed in a multi-session subgroup. Areas of higher coupling were observed in the visual, motor, parietal, and frontal cortices and corresponded to major brain networks. Areas of significant correlation between coupling and BOLD RS measures corresponded to areas of heightened coupling. Higher variability and lower reliability were found for coupling metrics compared to BOLD RS metrics. These results indicate BOLD-CBF coupling metrics may be useful for studying neurovascular physiology.
Collapse
Affiliation(s)
- Alexander D Cohen
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Stefano Moia
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - G Bruce Pike
- Departments of Radiology and Clinical Neurosciences, and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - César Caballero-Gaudes
- Basque Center on Cognition, Brain and Language, San Sebastián - Donostia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
4
|
Chandler HL, Stickland RC, Patitucci E, Germuska M, Chiarelli AM, Foster C, Bhome-Dhaliwal S, Lancaster TM, Saxena N, Khot S, Tomassini V, Wise RG. Reduced brain oxygen metabolism in patients with multiple sclerosis: Evidence from dual-calibrated functional MRI. J Cereb Blood Flow Metab 2023; 43:115-128. [PMID: 36071645 PMCID: PMC9875355 DOI: 10.1177/0271678x221121849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 01/28/2023]
Abstract
Cerebral energy deficiency is increasingly recognised as an important feature of multiple sclerosis (MS). Until now, we have lacked non-invasive imaging methods to quantify energy utilisation and mitochondrial function in the human brain. Here, we used novel dual-calibrated functional magnetic resonance imaging (dc-fMRI) to map grey-matter (GM) deoxy-haemoglobin sensitive cerebral blood volume (CBVdHb), cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen consumption (CMRO2) in patients with MS (PwMS) and age/sex matched controls. By integrating a flow-diffusion model of oxygen transport, we evaluated the effective oxygen diffusivity of the capillary network (DC) and the partial pressure of oxygen at the mitochondria (PmO2). Significant between-group differences were observed as decreased CBF (p = 0.010), CMRO2 (p < 0.001) and DC (p = 0.002), and increased PmO2 (p = 0.043) in patients compared to controls. No significant differences were observed for CBVdHb (p = 0.389), OEF (p = 0.358), or GM volume (p = 0.302). Regional analysis showed widespread reductions in CMRO2 and DC for PwMS. Our findings may be indicative of reduced oxygen demand or utilisation in the MS brain and mitochondrial dysfunction. Our results suggest changes in brain physiology may precede MRI-detectable GM loss and may contribute to disease progression and neurodegeneration.
Collapse
Affiliation(s)
| | - Rachael C Stickland
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Department of Physical Therapy and Human Movement Sciences,
Northwestern University, Chicago, IL, USA
| | | | | | - Antonio M Chiarelli
- Institute for Advanced Biomedical Technologies, University “G.
d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences,
University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Catherine Foster
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Wales Institute of Social and Economic Research and Data,
Cardiff University, Cardiff, UK
| | | | - Thomas M Lancaster
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Department of Psychology, University of Bath, Bath, UK
| | - Neeraj Saxena
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Department of Anaesthetics, Intensive Care and Pain Medicine,
Cwm Taf Morgannwg University Health Board, Abercynon, UK
| | - Sharmila Khot
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Cardiff University School of Medicine, Cardiff, UK
| | - Valentina Tomassini
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Institute for Advanced Biomedical Technologies, University “G.
d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences,
University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
- MS Centre, Neurology Unit, “SS. Annunziata” University Hospital,
Chieti, Italy
- Division of Psychological Medicine and Clinical Neurosciences,
School of Medicine, Cardiff University, Cardiff, UK
- Helen Durham Centre for Neuroinflammation, University Hospital
of Wales, Cardiff, UK
| | - Richard G Wise
- CUBRIC, School of Psychology, Cardiff University, Cardiff,
UK
- Institute for Advanced Biomedical Technologies, University “G.
d'Annunzio” of Chieti-Pescara, Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences,
University “G. d'Annunzio” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Schmithorst VJ, Adams PS, Badaly D, Lee VK, Wallace J, Beluk N, Votava-Smith JK, Weinberg JG, Beers SR, Detterich J, Wood JC, Lo CW, Panigrahy A. Impaired Neurovascular Function Underlies Poor Neurocognitive Outcomes and Is Associated with Nitric Oxide Bioavailability in Congenital Heart Disease. Metabolites 2022; 12:metabo12090882. [PMID: 36144286 PMCID: PMC9504090 DOI: 10.3390/metabo12090882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
We use a non-invasive MRI proxy of neurovascular function (pnvf) to assess the ability of the vasculature to supply baseline metabolic demand, to compare pediatric and young adult congenital heart disease (CHD) patients to normal referents and relate the proxy to neurocognitive outcomes and nitric oxide bioavailability. In a prospective single-center study, resting-state blood-oxygen-level-dependent (BOLD) and arterial spin labeling (ASL) MRI scans were successfully obtained from 24 CHD patients (age = 15.4 ± 4.06 years) and 63 normal referents (age = 14.1 ± 3.49) years. Pnvf was computed on a voxelwise basis as the negative of the ratio of functional connectivity strength (FCS) estimated from the resting-state BOLD acquisition to regional cerebral blood flow (rCBF) as estimated from the ASL acquisition. Pnvf was used to predict end-tidal CO2 (PETCO2) levels and compared to those estimated from the BOLD data. Nitric oxide availability was obtained via nasal measurements (nNO). Pnvf was compared on a voxelwise basis between CHD patients and normal referents and correlated with nitric oxide availability and neurocognitive outcomes as assessed via the NIH Toolbox. Pnvf was shown as highly predictive of PETCO2 using theoretical modeling. Pnvf was found to be significantly reduced in CHD patients in default mode network (DMN, comprising the ventromedial prefrontal cortex and posterior cingulate/precuneus), salience network (SN, comprising the insula and dorsal anterior cingulate), and central executive network (CEN, comprising posterior parietal and dorsolateral prefrontal cortex) regions with similar findings noted in single cardiac ventricle patients. Positive correlations of Pnvf in these brain regions, as well as the hippocampus, were found with neurocognitive outcomes. Similarly, positive correlations between Pnvf and nitric oxide availability were found in frontal DMN and CEN regions, with particularly strong correlations in subcortical regions (putamen). Reduced Pnvf in CHD patients was found to be mediated by nNO. Mediation analyses further supported that reduced Pnvf in these regions underlies worse neurocognitive outcome in CHD patients and is associated with nitric oxide bioavailability. Impaired neuro-vascular function, which may be non-invasively estimated via combined arterial-spin label and BOLD MR imaging, is a nitric oxide bioavailability dependent factor implicated in adverse neurocognitive outcomes in pediatric and young adult CHD.
Collapse
Affiliation(s)
| | - Phillip S. Adams
- Department of Pediatric Anesthesiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | - Daryaneh Badaly
- Learning and Development Center, Child Mind Institute, New York, NY 10022, USA
| | - Vincent K. Lee
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Julia Wallace
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | - Nancy Beluk
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
| | | | | | - Sue R. Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jon Detterich
- Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - John C. Wood
- Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Pediatric Radiology, UPMC Children’s Hospital, Pittsburgh, PA 15224, USA
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Correspondence: ; Tel.: +1-412-692-5510; Fax: +1-412-692-6929
| |
Collapse
|
6
|
Shepelytskyi Y, Grynko V, Rao MR, Li T, Agostino M, Wild JM, Albert MS. Hyperpolarized 129 Xe imaging of the brain: Achievements and future challenges. Magn Reson Med 2022; 88:83-105. [PMID: 35253919 PMCID: PMC9314594 DOI: 10.1002/mrm.29200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/22/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022]
Abstract
Hyperpolarized (HP) xenon-129 (129 Xe) brain MRI is a promising imaging modality currently under extensive development. HP 129 Xe is nontoxic, capable of dissolving in pulmonary blood, and is extremely sensitive to the local environment. After dissolution in the pulmonary blood, HP 129 Xe travels with the blood flow to the brain and can be used for functional imaging such as perfusion imaging, hemodynamic response detection, and blood-brain barrier permeability assessment. HP 129 Xe MRI imaging of the brain has been performed in animals, healthy human subjects, and in patients with Alzheimer's disease and stroke. In this review, the overall progress in the field of HP 129 Xe brain imaging is discussed, along with various imaging approaches and pulse sequences used to optimize HP 129 Xe brain MRI. In addition, current challenges and limitations of HP 129 Xe brain imaging are discussed, as well as possible methods for their mitigation. Finally, potential pathways for further development are also discussed. HP 129 Xe MRI of the brain has the potential to become a valuable novel perfusion imaging technique and has the potential to be used in the clinical setting in the future.
Collapse
Affiliation(s)
- Yurii Shepelytskyi
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Vira Grynko
- Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Chemistry and Materials Science Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Madhwesha R Rao
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK
| | - Tao Li
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Martina Agostino
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Jim M Wild
- POLARIS, Unit of Academic Radiology, Department of IICD, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, Sheffield, UK
| | - Mitchell S Albert
- Chemistry Department, Lakehead University, Thunder Bay, Ontario, Canada.,Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
7
|
Chiarelli AM, Germuska M, Chandler H, Stickland R, Patitucci E, Biondetti E, Mascali D, Saxena N, Khot S, Steventon J, Foster C, Rodríguez-Soto AE, Englund E, Murphy K, Tomassini V, Wehrli FW, Wise RG. A flow-diffusion model of oxygen transport for quantitative mapping of cerebral metabolic rate of oxygen (CMRO 2) with single gas calibrated fMRI. J Cereb Blood Flow Metab 2022; 42:1192-1209. [PMID: 35107026 PMCID: PMC9207485 DOI: 10.1177/0271678x221077332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One promising approach for mapping CMRO2 is dual-calibrated functional MRI (dc-fMRI). This method exploits the Fick Principle to combine estimates of CBF from ASL, and OEF derived from BOLD-ASL measurements during arterial O2 and CO2 modulations. Multiple gas modulations are required to decouple OEF and deoxyhemoglobin-sensitive blood volume. We propose an alternative single gas calibrated fMRI framework, integrating a model of oxygen transport, that links blood volume and CBF to OEF and creates a mapping between the maximum BOLD signal, CBF and OEF (and CMRO2). Simulations demonstrated the method's viability within physiological ranges of mitochondrial oxygen pressure, PmO2, and mean capillary transit time. A dc-fMRI experiment, performed on 20 healthy subjects using O2 and CO2 challenges, was used to validate the approach. The validation conveyed expected estimates of model parameters (e.g., low PmO2), with spatially uniform OEF maps (grey matter, GM, OEF spatial standard deviation ≈ 0.13). GM OEF estimates obtained with hypercapnia calibrated fMRI correlated with dc-fMRI (r = 0.65, p = 2·10-3). For 12 subjects, OEF measured with dc-fMRI and the single gas calibration method were correlated with whole-brain OEF derived from phase measures in the superior sagittal sinus (r = 0.58, p = 0.048; r = 0.64, p = 0.025 respectively). Simplified calibrated fMRI using hypercapnia holds promise for clinical application.
Collapse
Affiliation(s)
- Antonio M Chiarelli
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Michael Germuska
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Hannah Chandler
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Rachael Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eleonora Patitucci
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Emma Biondetti
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Daniele Mascali
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Neeraj Saxena
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Sharmila Khot
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Jessica Steventon
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Catherine Foster
- Wales Institute of Social and Economic Research and Data (WISERD), School of Social Sciences, Cardiff University, Cardiff, UK
| | - Ana E Rodríguez-Soto
- Department of Radiology, University of California, San Diego, La Jolla, California, USA
| | - Erin Englund
- Department of Radiology, University of Colorado, Aurora, Colorado, USA
| | - Kevin Murphy
- Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Valentina Tomassini
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK.,MS Centre, Dept of Clinical Neurology, SS. Annunziata University Hospital, Chieti, Italy.,Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK.,Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Felix W Wehrli
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard G Wise
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy.,Department of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Jiang D, Lu H. Cerebral oxygen extraction fraction MRI: Techniques and applications. Magn Reson Med 2022; 88:575-600. [PMID: 35510696 PMCID: PMC9233013 DOI: 10.1002/mrm.29272] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/20/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.
Collapse
Affiliation(s)
- Dengrong Jiang
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Comparison of test–retest reliability of BOLD and pCASL fMRI in a two-center study. BMC Med Imaging 2022; 22:62. [PMID: 35366813 PMCID: PMC8977011 DOI: 10.1186/s12880-022-00791-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Background The establishment of test–retest reliability and reproducibility (TRR) is an important part of validating any research tool, including functional magnetic resonance imaging (fMRI). The primary objective of this study is to investigate the reliability of pseudo-Continuous Arterial Spin Labeling (pCASL) and Blood Oxygen Level Dependent (BOLD) fMRI data acquired across two different scanners in a sample of healthy adults. While single site/single scanner studies have shown acceptable repeatability, TRR of both in a practical multisite study occurring in two facilities spread out across the country with weeks to months between scans is critically needed. Methods Ten subjects were imaged with similar 3 T MRI scanners at the University of Pittsburgh and Massachusetts General Hospital. Finger-tapping and Resting-state data were acquired for both techniques. Analysis of the resting state data for functional connectivity was performed with the Functional Connectivity Toolbox, while analysis of the finger tapping data was accomplished with FSL. pCASL Blood flow data was generated using AST Toolbox. Activated areas and networks were identified via pre-defined atlases and dual-regression techniques. Analysis for TRR was conducted by comparing pCASL and BOLD images in terms of Intraclass correlation coefficients, Dice Similarity Coefficients, and repeated measures ANOVA. Results Both BOLD and pCASL scans showed strong activation and correlation between the two locations for the finger tapping tasks. Functional connectivity analyses identified elements of the default mode network in all resting scans at both locations. Multivariate repeated measures ANOVA showed significant variability between subjects, but no significant variability for location. Global CBF was very similar between the two scanning locations, and repeated measures ANOVA showed no significant differences between the two scanning locations. Conclusions The results of this study show that when similar scanner hardware and software is coupled with identical data analysis protocols, consistent and reproducible functional brain images can be acquired across sites. The variability seen in the activation maps is greater for pCASL versus BOLD images, as expected, however groups maps are remarkably similar despite the low number of subjects. This demonstrates that multi-site fMRI studies of task-based and resting state brain activity is feasible.
Collapse
|
10
|
Nakamura Y, Uematsu A, Okanoya K, Koike S. The effect of acquisition duration on cerebral blood flow-based resting-state functional connectivity. Hum Brain Mapp 2022; 43:3184-3194. [PMID: 35338768 PMCID: PMC9189081 DOI: 10.1002/hbm.25843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Resting-state functional connectivity (rs-FC) is widely used to examine the functional architecture of the brain, and the blood-oxygenation-level-dependent (BOLD) signal is often utilized for determining rs-FC. However, the BOLD signal is susceptible to various factors that have less influence on the cerebral blood flow (CBF). Therefore, CBF could comprise an alternative for determining rs-FC. Since acquisition duration is one of the essential parameters for obtaining reliable rs-FC, we investigated the effect of acquisition duration on CBF-based rs-FC to examine the reliability of CBF-based rs-FC. Nineteen participants underwent CBF scanning for a total duration of 50 min. Variance of CBF-based rs-FC within the whole brain and 13 large-scale brain networks at various acquisition durations was compared to that with a 50-min duration using the Levene's test. Variance of CBF-based rs-FC at any durations did not differ from that at a 50-min duration (p > .05). Regarding variance of rs-FC within each large-scale brain network, the acquisition duration required to obtain reliable estimates of CBF-based rs-FC was shorter than 10 min and varied across large-scale brain networks. Altogether, an acquisition duration of at least 10 min is required to obtain reliable CBF-based rs-FC. These results indicate that CBF-based resting-state functional magnetic resonance imaging (rs-fMRI) with more than 10 min of total acquisition duration could be an alternative method to BOLD-based rs-fMRI to obtain reliable rs-FC.
Collapse
Affiliation(s)
- Yuko Nakamura
- The UTokyo Center for Integrative Science of Human Behavior (CiSHuB), The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan
| | - Akiko Uematsu
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kazuo Okanoya
- The UTokyo Center for Integrative Science of Human Behavior (CiSHuB), The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan.,International Research Center for Neurointelligence (IRCN), Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.,Cognition and Behavior Joint Research Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Shinsuke Koike
- The UTokyo Center for Integrative Science of Human Behavior (CiSHuB), The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, Japan.,University of Tokyo Institute for Diversity & Adaptation of Human Mind (UTIDAHM), Tokyo, Japan.,International Research Center for Neurointelligence (IRCN), Tokyo, Japan
| |
Collapse
|
11
|
Li Y, Fan X, Li Y, Liu S, Chuah C, Tang Y, Kwok RTK, Lam JWY, Lu X, Qian J, Tang BZ. Molecular Crystal Engineering of Organic Chromophores for NIR-II Fluorescence Quantification of Cerebrovascular Function. ACS NANO 2022; 16:3323-3331. [PMID: 35156810 DOI: 10.1021/acsnano.1c11424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although molecular design strategies for highly bright near-infrared II (NIR-II) fluorophores were proposed, the lack of solid structural identification (single crystal) hinders the further development of this field. This thorny issue is addressed by performing the structure-function relationship of NIR-II dyes, as confirmed by molecular single crystal engineering. Single crystal structure analysis confirms that twisted architectures (large dihedral angles ∼70°) and loose packing patterns (intermolecular distance of ∼3.4-4.5 Å) are key elements to enhance the absolute quantum yield (QY) in the solid state. Through regulating donor-acceptor distance and donor-acceptor interactions, the resultant well-defined TBP-b-DFA fluorophore displays an absolute QY of 0.4% with an emission extending to 1400 nm, which is favorable for NIR-II bioimaging. The cerebrovascular function, including cerebral blood flow and cerebrovascular reactivity of different conditions, is accurately quantified by a NIR-II fluorescence wide-field microscope. Our study provides a sight for designing NIR-II fluorophores, which is useful for studying cerebrovascular function.
Collapse
Affiliation(s)
- Yuanyuan Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoxiao Fan
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, P. R. China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yirun Li
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, P. R. China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shunjie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Clarence Chuah
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xuefeng Lu
- Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
12
|
Schmithorst VJ, Badaly D, Beers SR, Lee VK, Weinberg J, Lo CW, Panigrahy A. Relationships Between Regional Cerebral Blood Flow and Neurocognitive Outcomes in Children and Adolescents With Congenital Heart Disease. Semin Thorac Cardiovasc Surg 2022; 34:1285-1295. [PMID: 34767938 PMCID: PMC9085965 DOI: 10.1053/j.semtcvs.2021.10.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/03/2023]
Abstract
To identify regional cerebral blood flow (rCBF) alterations in children and adolescents with congenital heart disease (CHD) in relation to neurocognitive outcomes using a nonbiased data-driven approach. This is a prospective, observational study of children and adolescents with CHD without brain injury and healthy controls using pseudo-continuous arterial spin labeling (pCASL) MRI. Quantitative rCBF was compared between participants with CHD and healthy controls using a voxelwise data-driven method. Mediation analysis was then performed on a voxelwise basis, with the grouping variable as the independent variable, neurocognitive outcomes (from the NIH Toolbox Cognitive Battery) as the dependent variables, and rCBF as the mediator. After motion correction, a total of 80 studies were analyzable (27 for patients with CHD, 53 for controls). We found steeper age-related decline in rCBF among those with CHD compared to normal controls in the insula/ventromedial prefrontal regions (salience network) and the dorsal anterior cingulate and precuneus/posterior cingulate (default mode network), and posterior parietal/dorsolateral prefrontal (central executive network) (FWE-corrected P< 0.05). The reduced rCBF in the default mode/salience network was found to mediate poorer performance on an index of crystallized cognition from the NIH Toolbox Cognitive Battery in those with CHD compared to controls. In contrast, reduced rCBF in the central executive network/salience network mediated reduced deficits in fluid cognition among patients with CHD compared to controls. Regional cerebral blood flow alterations mediate domain-specific differences in cognitive performance in children and adolescents with CHD compared to healthy controls, independent of injury, and are likely related to brain and cognitive reserve mechanisms. Further research is needed to evaluate the potential of interventions in CHD targeting regional cerebral blood flow across lifespan.
Collapse
Affiliation(s)
| | | | - Sue R. Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Vincent K. Lee
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh
| | | | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh
| | - Ashok Panigrahy
- Department of Radiology, UPMC Children’s Hospital of Pittsburgh,Department of Biomedical Informatics, University of Pittsburgh School of Medicine
| |
Collapse
|
13
|
Chan ST, Mercaldo ND, Kwong KK, Hersch SM, Rosas HD. Impaired Cerebrovascular Reactivity in Huntington's Disease. Front Physiol 2021; 12:663898. [PMID: 34366879 PMCID: PMC8334185 DOI: 10.3389/fphys.2021.663898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
There is increasing evidence that impairments of cerebrovascular function and/or abnormalities of the cerebral vasculature might contribute to early neuronal cell loss in Huntington's disease (HD). Studies in both healthy individuals as well as in patients with other neurodegenerative disorders have used an exogenous carbon dioxide (CO2) challenge in conjunction with functional magnetic resonance imaging (fMRI) to assess regional cerebrovascular reactivity (CVR). In this study, we explored potential impairments of CVR in HD. Twelve gene expanded HD individuals, including both pre-symptomatic and early symptomatic HD and eleven healthy controls were administered a gas mixture targeting a 4-8 mmHg increase in CO2 relative to the end-tidal partial pressure of CO2 (P ET CO2) at rest. A Hilbert Transform analysis was used to compute the cross-correlation between the time series of regional BOLD signal changes (ΔBOLD) and increased P ET CO2, and to estimate the response delay of ΔBOLD relative to P ET CO2. After correcting for age, we found that the cross-correlation between the time series for regional ΔBOLD and for P ET CO2 was weaker in HD subjects than in controls in several subcortical white matter regions, including the corpus callosum, subcortical white matter adjacent to rostral and caudal anterior cingulate, rostral and caudal middle frontal, insular, middle temporal, and posterior cingulate areas. In addition, greater volume of dilated perivascular space (PVS) was observed to overlap, primarily along the periphery, with the areas that showed greater ΔBOLD response delay. Our preliminary findings support that alterations in cerebrovascular function occur in HD and may be an important, not as yet considered, contributor to early neuropathology in HD.
Collapse
Affiliation(s)
- Suk Tak Chan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Nathaniel D Mercaldo
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Kenneth K Kwong
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Steven M Hersch
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Herminia D Rosas
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Overton DJ, Bhagwat N, Viviano JD, Jacobs GR, Voineskos AN. Identifying psychosis spectrum youth using support vector machines and cerebral blood perfusion as measured by arterial spin labeled fMRI. NEUROIMAGE-CLINICAL 2020; 27:102304. [PMID: 32599552 PMCID: PMC7327868 DOI: 10.1016/j.nicl.2020.102304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 01/17/2023]
Abstract
Psychosis spectrum (PS) youth can be identified with support vector machines. Classification is improved when youth with psychiatric comorbidities are excluded. Cerebral blood flow (CBF) connectivity differences were noted between PS and non-PS.
Altered cerebral blood flow (CBF), as measured by arterial spin labelling (ASL), has been observed in several psychiatric conditions, but is a generally underutilized MRI technique, especially in the study of psychosis spectrum (PS) symptoms. We aimed to determine group differences in ASL resting state functional connectivity (rsFC) between PS and non-PS youth, and the reliability of a support vector machine (SVM) classifier trained on ASL rsFC features to differentiate PS and non-PS youth, especially compared to blood oxygen level dependent (BOLD) fMRI. 1146 youth aged 8–22 with ASL and BOLD data from the Philadelphia Neurodevelopmental Cohort were analyzed. Widespread ASL hyperconnectivity was found in the left cuneus, precuneus, and dorsolateral prefrontal cortex, and hypoconnectivity was found in the left cingulate cortex and orbitofrontal area (multiple linear regression, FDR corrected). An SVM trained on ASL and BOLD features outperformed either modality alone (AUCBOTH = 0.72 versus AUCASL = 0.68 and AUCBOLD = 0.67). Classification performance and precision improved when the non-PS group had no psychiatric comorbidities. The relative success of the classifier suggests ASL rsFC changes exist in PS individuals that differ from BOLD rsFC changes, and extends previous findings of CBF dysregulation in PS.
Collapse
Affiliation(s)
- Dawson J Overton
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Nikhil Bhagwat
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Joseph D Viviano
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Grace R Jacobs
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging Genetics Research Laboratory, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
15
|
Chan ST, Evans KC, Song TY, Selb J, van der Kouwe A, Rosen BR, Zheng YP, Ahn A, Kwong KK. Cerebrovascular reactivity assessment with O2-CO2 exchange ratio under brief breath hold challenge. PLoS One 2020; 15:e0225915. [PMID: 32208415 PMCID: PMC7092994 DOI: 10.1371/journal.pone.0225915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hypercapnia during breath holding is believed to be the dominant driver behind the modulation of cerebral blood flow (CBF). However, increasing evidence show that mild hypoxia and mild hypercapnia in breath hold (BH) could work synergistically to enhance CBF response. We hypothesized that breath-by-breath O2-CO2 exchange ratio (bER), defined as the ratio of the change in partial pressure of oxygen (ΔPO2) to that of carbon dioxide (ΔPCO2) between end inspiration and end expiration, would be able to better correlate with the global and regional cerebral hemodynamic responses (CHR) to BH challenge. We aimed to investigate whether bER is a more useful index than end-tidal PCO2 to characterize cerebrovascular reactivity (CVR) under BH challenge. METHODS We used transcranial Doppler ultrasound (TCD) to evaluate CHR under BH challenge by measuring cerebral blood flow velocity (CBFv) in the middle cerebral arteries. Regional changes in CHR to BH and exogenous CO2 challenges were mapped with blood oxygenation level dependent (BOLD) signal changes using functional magnetic resonance imaging (fMRI). We correlated respiratory gas exchange (RGE) metrics (bER, ΔPO2, ΔPCO2, end-tidal PCO2 and PO2, and time of breaths) with CHR (CBFv and BOLD) to BH challenge. Temporal features and frequency characteristics of RGE metrics and their coherence with CHR were examined. RESULTS CHR to brief BH epochs and free breathing were coupled with both ΔPO2 and ΔPCO2. We found that bER was superior to either ΔPO2 or ΔPCO2 alone in coupling with the changes of CBFv and BOLD signals under breath hold challenge. The regional CVR results derived by regressing BOLD signal changes on bER under BH challenge resembled those derived by regressing BOLD signal changes on end-tidal PCO2 under exogenous CO2 challenge. CONCLUSION Our findings provide a novel insight on the potential of using bER to better quantify CVR changes under BH challenge.
Collapse
Affiliation(s)
- Suk-tak Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Karleyton C. Evans
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Tian-yue Song
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Juliette Selb
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Bruce R. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Yong-ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Andrew Ahn
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Kenneth K. Kwong
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| |
Collapse
|
16
|
Hernandez-Garcia L, Lahiri A, Schollenberger J. Recent progress in ASL. Neuroimage 2019; 187:3-16. [PMID: 29305164 PMCID: PMC6030511 DOI: 10.1016/j.neuroimage.2017.12.095] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 11/26/2022] Open
Abstract
This article aims to provide the reader with an overview of recent developments in Arterial Spin Labeling (ASL) MRI techniques. A great deal of progress has been made in recent years in terms of the SNR and acquisition speed. New strategies have been introduced to improve labeling efficiency, reduce artefacts, and estimate other relevant physiological parameters besides perfusion. As a result, ASL techniques has become a reliable workhorse for researchers as well as clinicians. After a brief overview of the technique's fundamentals, this article will review new trends and variants in ASL including vascular territory mapping and velocity selective ASL, as well as arterial blood volume imaging techniques. This article will also review recent processing techniques to reduce partial volume effects and physiological noise. Next the article will examine how ASL techniques can be leveraged to calculate additional physiological parameters beyond perfusion and finally, it will review a few recent applications of ASL in the literature.
Collapse
Affiliation(s)
| | - Anish Lahiri
- FMRI Laboratory, University of Michigan, United States
| | | |
Collapse
|
17
|
Germuska M, Chandler HL, Stickland RC, Foster C, Fasano F, Okell TW, Steventon J, Tomassini V, Murphy K, Wise RG. Dual-calibrated fMRI measurement of absolute cerebral metabolic rate of oxygen consumption and effective oxygen diffusivity. Neuroimage 2019; 184:717-728. [PMID: 30278214 PMCID: PMC6264385 DOI: 10.1016/j.neuroimage.2018.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 01/14/2023] Open
Abstract
Dual-calibrated fMRI is a multi-parametric technique that allows for the quantification of the resting oxygen extraction fraction (OEF), the absolute rate of cerebral metabolic oxygen consumption (CMRO2), cerebral vascular reactivity (CVR) and baseline perfusion (CBF). It combines measurements of arterial spin labelling (ASL) and blood oxygenation level dependent (BOLD) signal changes during hypercapnic and hyperoxic gas challenges. Here we propose an extension to this methodology that permits the simultaneous quantification of the effective oxygen diffusivity of the capillary network (DC). The effective oxygen diffusivity has the scope to be an informative biomarker and useful adjunct to CMRO2, potentially providing a non-invasive metric of microvascular health, which is known to be disturbed in a range of neurological diseases. We demonstrate the new method in a cohort of healthy volunteers (n = 19) both at rest and during visual stimulation. The effective oxygen diffusivity was found to be highly correlated with CMRO2 during rest and activation, consistent with previous PET observations of a strong correlation between metabolic oxygen demand and effective diffusivity. The increase in effective diffusivity during functional activation was found to be consistent with previously reported increases in capillary blood volume, supporting the notion that measured oxygen diffusivity is sensitive to microvascular physiology.
Collapse
Affiliation(s)
- M Germuska
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - H L Chandler
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - R C Stickland
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - C Foster
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - F Fasano
- Siemens Healthcare Ltd, Frimley, Camberley, UK
| | - T W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - J Steventon
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - V Tomassini
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - K Murphy
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - R G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
18
|
Kim JH, Choi DS, Park SE, Choi HC, Koh EH, Kim SH. Preoperative localization of the sensorimotor cortex and measurement of tumor perfusion in a single acquisition using ASL technique. J Clin Neurosci 2018; 59:367-371. [PMID: 30391311 DOI: 10.1016/j.jocn.2018.10.098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/01/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022]
Abstract
Resting state fMRI (rs-fMRI) using arterial spin labelling (ASL) technique was performed for the preoperative localization of the sensorimotor cortex in a patient with lymphoma and the results were compared to those of task-based (tb) and rs-fMRI studies using blood oxygenation level-dependent (BOLD) sequence. Rs-fMRI using ASL showed similar results in the regions of the sensorimotor network to those of tb- and rs-fMRI fMRI using BOLD. ASL technique has a potential in clinical practice because all of brain perfusion imaging, cerebral blood flow measurement, and rs-fMRI study can be performed at a single acquisition.
Collapse
Affiliation(s)
- Ju Ho Kim
- Department of Radiology, Gyeongsang National University Hospital and Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dae Seob Choi
- Department of Radiology, Gyeongsang National University Hospital and Gyeongsang National University School of Medicine, Jinju, Republic of Korea; Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea.
| | - Sung Eun Park
- Department of Radiology, Gyeongsang National University Hospital and Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ho Cheol Choi
- Department of Radiology, Gyeongsang National University Hospital and Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Eun Ha Koh
- Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Seong Hu Kim
- Department of Radiology, Masan University, Changwon, Republic of Korea
| |
Collapse
|
19
|
Germuska M, Wise RG. Calibrated fMRI for mapping absolute CMRO 2: Practicalities and prospects. Neuroimage 2018; 187:145-153. [PMID: 29605580 DOI: 10.1016/j.neuroimage.2018.03.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 01/21/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is an essential workhorse of modern neuroscience, providing valuable insight into the functional organisation of the brain. The physiological mechanisms underlying the blood oxygenation level dependent (BOLD) effect are complex and preclude a straightforward interpretation of the signal. However, by employing appropriate calibration of the BOLD signal, quantitative measurements can be made of important physiological parameters including the absolute rate of cerebral metabolic oxygen consumption or oxygen metabolism (CMRO2) and oxygen extraction (OEF). The ability to map such fundamental parameters has the potential to greatly expand the utility of fMRI and to broaden its scope of application in clinical research and clinical practice. In this review article we discuss some of the practical issues related to the calibrated-fMRI approach to the measurement of CMRO2. We give an overview of the necessary precautions to ensure high quality data acquisition, and explore some of the pitfalls and challenges that must be considered as it is applied and interpreted in a widening array of diseases and research questions.
Collapse
Affiliation(s)
- M Germuska
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, CF24 4HQ, Cardiff, UK
| | - R G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, CF24 4HQ, Cardiff, UK.
| |
Collapse
|
20
|
Cohen AD, Nencka AS, Wang Y. Multiband multi-echo simultaneous ASL/BOLD for task-induced functional MRI. PLoS One 2018; 13:e0190427. [PMID: 29389985 PMCID: PMC5794066 DOI: 10.1371/journal.pone.0190427] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/14/2017] [Indexed: 11/22/2022] Open
Abstract
Typical simultaneous blood oxygenation-level dependent (BOLD) and arterial spin labeling (ASL) sequences acquire two echoes, one perfusion-sensitive and one BOLD-sensitive. However, for ASL, spatial resolution and brain coverage are limited due to the T1 decay of the labeled blood. This study applies a sequence combining a multiband acquisition with four echoes for simultaneous BOLD and pseudo-continuous ASL (pCASL) echo planar imaging (MBME ASL/BOLD) for block-design task-fMRI. A multiband acceleration of four was employed to increase brain coverage and reduce slice-timing effects on the ASL signal. Multi-echo independent component analysis (MEICA) was implemented to automatically denoise the BOLD signal by regressing non-BOLD components. This technique led to increased temporal signal-to-noise ratio (tSNR) and BOLD sensitivity. The MEICA technique was also modified to denoise the ASL signal by regressing artifact and BOLD signals from the first echo time-series. The MBME ASL/BOLD sequence was applied to a finger-tapping task functional MRI (fMRI) experiment. Signal characteristics and activation were evaluated using single echo BOLD, combined ME BOLD, combined ME BOLD after MEICA denoising, perfusion-weighted (PW), and perfusion-weighted after MEICA denoising time-series. The PW data was extracted using both surround subtraction and high-pass filtering followed by demodulation. In addition, the CBF/BOLD response ratio and CBF/BOLD coupling were analyzed. Results showed that the MEICA denoising procedure significantly improved the BOLD signal, leading to increased BOLD sensitivity, tSNR, and activation statistics compared to conventional single echo BOLD data. At the same time, the denoised PW data showed increased tSNR and activation statistics compared to the non-denoised PW data. CBF/BOLD coupling was also increased using the denoised ASL and BOLD data. Our preliminary data suggest that the MBME ASL/BOLD sequence can be employed to collect whole-brain task-fMRI with improved data quality for both BOLD and PW time series, thus improving the results of block-design task fMRI.
Collapse
Affiliation(s)
- Alexander D Cohen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
21
|
Storti SF, Galazzo IB, Pizzini FB, Menegaz G. Dual-echo ASL based assessment of motor networks: a feasibility study. J Neural Eng 2018; 15:026018. [DOI: 10.1088/1741-2552/aa8b27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Bright MG, Croal PL, Blockley NP, Bulte DP. Multiparametric measurement of cerebral physiology using calibrated fMRI. Neuroimage 2017; 187:128-144. [PMID: 29277404 DOI: 10.1016/j.neuroimage.2017.12.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023] Open
Abstract
The ultimate goal of calibrated fMRI is the quantitative imaging of oxygen metabolism (CMRO2), and this has been the focus of numerous methods and approaches. However, one underappreciated aspect of this quest is that in the drive to measure CMRO2, many other physiological parameters of interest are often acquired along the way. This can significantly increase the value of the dataset, providing greater information that is clinically relevant, or detail that can disambiguate the cause of signal variations. This can also be somewhat of a double-edged sword: calibrated fMRI experiments combine multiple parameters into a physiological model that requires multiple steps, thereby providing more opportunity for error propagation and increasing the noise and error of the final derived values. As with all measurements, there is a trade-off between imaging time, spatial resolution, coverage, and accuracy. In this review, we provide a brief overview of the benefits and pitfalls of extracting multiparametric measurements of cerebral physiology through calibrated fMRI experiments.
Collapse
Affiliation(s)
- Molly G Bright
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Paula L Croal
- IBME, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Nicholas P Blockley
- FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Daniel P Bulte
- IBME, Department of Engineering Science, University of Oxford, Oxford, UK; FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
23
|
Cohen AD, Nencka AS, Lebel RM, Wang Y. Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity. PLoS One 2017; 12:e0169253. [PMID: 28253268 PMCID: PMC5333818 DOI: 10.1371/journal.pone.0169253] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
A novel sequence has been introduced that combines multiband imaging with a multi-echo acquisition for simultaneous high spatial resolution pseudo-continuous arterial spin labeling (ASL) and blood-oxygenation-level dependent (BOLD) echo-planar imaging (MBME ASL/BOLD). Resting-state connectivity in healthy adult subjects was assessed using this sequence. Four echoes were acquired with a multiband acceleration of four, in order to increase spatial resolution, shorten repetition time, and reduce slice-timing effects on the ASL signal. In addition, by acquiring four echoes, advanced multi-echo independent component analysis (ME-ICA) denoising could be employed to increase the signal-to-noise ratio (SNR) and BOLD sensitivity. Seed-based and dual-regression approaches were utilized to analyze functional connectivity. Cerebral blood flow (CBF) and BOLD coupling was also evaluated by correlating the perfusion-weighted timeseries with the BOLD timeseries. These metrics were compared between single echo (E2), multi-echo combined (MEC), multi-echo combined and denoised (MECDN), and perfusion-weighted (PW) timeseries. Temporal SNR increased for the MECDN data compared to the MEC and E2 data. Connectivity also increased, in terms of correlation strength and network size, for the MECDN compared to the MEC and E2 datasets. CBF and BOLD coupling was increased in major resting-state networks, and that correlation was strongest for the MECDN datasets. These results indicate our novel MBME ASL/BOLD sequence, which collects simultaneous high-resolution ASL/BOLD data, could be a powerful tool for detecting functional connectivity and dynamic neurovascular coupling during the resting state. The collection of more than two echoes facilitates the use of ME-ICA denoising to greatly improve the quality of resting state functional connectivity MRI.
Collapse
Affiliation(s)
- Alexander D Cohen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andrew S Nencka
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | | | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
24
|
Impairments in Brain Perfusion, Metabolites, Functional Connectivity, and Cognition in Severe Asymptomatic Carotid Stenosis Patients: An Integrated MRI Study. Neural Plast 2017; 2017:8738714. [PMID: 28255464 PMCID: PMC5309400 DOI: 10.1155/2017/8738714] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/15/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023] Open
Abstract
Carotid artery stenosis without transient ischemic attack (TIA) or stroke is considered as "asymptomatic." However, recent studies have demonstrated that these asymptomatic carotid artery stenosis (aCAS) patients had cognitive impairment in tests of executive function, psychomotor speed, and memory, indicating that "asymptomatic" carotid stenosis may not be truly asymptomatic. In this study, when 19 aCAS patients compared with 24 healthy controls, aCAS patients showed significantly poorer performance on global cognition, memory, and executive function. By utilizing an integrated MRI including pulsed arterial spin labeling (pASL) MRI, Proton MR Spectroscopy (MRS), and resting-state functional MRI (R-fMRI), we also found that aCAS patients suffered decreased cerebral blood flow (CBF) mainly in the Left Frontal Gyrus and had decreased NAA/Cr ratio in the left hippocampus and decreased connectivity to the posterior cingulate cortex (PCC) in the anterior part of default mode network (DMN).
Collapse
|
25
|
A three-dimensional single-scan approach for the measurement of changes in cerebral blood volume, blood flow, and blood oxygenation-weighted signals during functional stimulation. Neuroimage 2017; 147:976-984. [DOI: 10.1016/j.neuroimage.2016.12.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/10/2016] [Accepted: 12/28/2016] [Indexed: 11/23/2022] Open
|
26
|
Horowitz-Kraus T, Farah R, Hajinazarian A, Eaton K, Rajagopal A, Schmithorst VJ, Altaye M, Vannest JJ, Holland SK. Maturation of Brain Regions Related to the Default Mode Network during Adolescence Facilitates Narrative Comprehension. ACTA ACUST UNITED AC 2017; 5. [PMID: 32524005 PMCID: PMC7286598 DOI: 10.4172/2375-4494.1000328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objectives Although the Default Mode Network (DMN) has been examined extensively in adults, developmental characteristics of this network during childhood are not fully understood. Methods In this longitudinal study, we characterized the developmental changes in the DMN in fifteen children who were each scanned three times during a narrative comprehension task using magnetic resonance imaging. Results Despite similar brain-activation patterns along developmental ages 5 to 18 years when listening to stories, increased, widely distributed deactivation of the DMN was observed in children between the ages of 11 and 18 years. Our findings suggest that changes occurring with increased age, primarily brain maturation and cognitive development drive deactivation of the DMN, which in turn might facilitate attendance to the task. Conclusions The interpretation of our results is as a possible reference for the typical course of deactivation of the DMN and to explain the impaired patterns in this neural network associated with different language-related pathologies.
Collapse
Affiliation(s)
- Tzipi Horowitz-Kraus
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Technion, Israel.,Reading and Literacy Discovery Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rola Farah
- Educational Neuroimaging Center, Faculty of Education in Science and Technology, Technion, Israel
| | - Ardag Hajinazarian
- Reading and Literacy Discovery Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kenneth Eaton
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Akila Rajagopal
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Vincent J Schmithorst
- Department of Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Mekibib Altaye
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jennifer J Vannest
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Scott K Holland
- Reading and Literacy Discovery Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA.,Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
27
|
Fernández-Seara MA, Rodgers ZB, Englund EK, Wehrli FW. Calibrated bold fMRI with an optimized ASL-BOLD dual-acquisition sequence. Neuroimage 2016; 142:474-482. [PMID: 27502047 DOI: 10.1016/j.neuroimage.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/11/2016] [Accepted: 08/04/2016] [Indexed: 11/25/2022] Open
Abstract
Calibrated fMRI techniques estimate task-induced changes in the cerebral metabolic rate of oxygen (CMRO2) based on simultaneous measurements of cerebral blood flow (CBF) and blood-oxygen-level-dependent (BOLD) signal changes evoked by stimulation. To determine the calibration factor M (corresponding to the maximum possible BOLD signal increase), BOLD signal and CBF are measured in response to a gas breathing challenge (usually CO2 or O2). Here we describe an ASL dual-acquisition sequence that combines a background-suppressed 3D-GRASE readout with 2D multi-slice EPI. The concatenation of these two imaging sequences allowed separate optimization of the acquisition for CBF and BOLD data. The dual-acquisition sequence was validated by comparison to an ASL sequence with a dual-echo EPI readout, using a visual fMRI paradigm. Results showed a 3-fold increase in temporal signal-to-noise ratio (tSNR) of the ASL time-series data while BOLD tSNR was similar to that obtained with the dual-echo sequence. The longer TR of the proposed dual-acquisition sequence, however, resulted in slightly lower T-scores (by 30%) in the BOLD activation maps. Further, the potential of the dual-acquisition sequence for M-mapping on the basis of a hypercapnia gas breathing challenge and for quantification of CMRO2 changes in response to a motor activation task was assessed. In five subjects, an average gray matter M-value of 8.71±1.03 and fractional changes of CMRO2 of 12.5±5% were found. The new sequence remedies the deficiencies of prior combined BOLD-ASL acquisition strategies by substantially enhancing perfusion tSNR, which is essential for accurate BOLD calibration.
Collapse
Affiliation(s)
| | - Zachary B Rodgers
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Erin K Englund
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural, Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, PA, USA
| |
Collapse
|
28
|
Montagne A, Nation DA, Pa J, Sweeney MD, Toga AW, Zlokovic BV. Brain imaging of neurovascular dysfunction in Alzheimer's disease. Acta Neuropathol 2016; 131:687-707. [PMID: 27038189 PMCID: PMC5283382 DOI: 10.1007/s00401-016-1570-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/29/2022]
Abstract
Neurovascular dysfunction, including blood-brain barrier (BBB) breakdown and cerebral blood flow (CBF) dysregulation and reduction, are increasingly recognized to contribute to Alzheimer's disease (AD). The spatial and temporal relationships between different pathophysiological events during preclinical stages of AD, including cerebrovascular dysfunction and pathology, amyloid and tau pathology, and brain structural and functional changes remain, however, still unclear. Recent advances in neuroimaging techniques, i.e., magnetic resonance imaging (MRI) and positron emission tomography (PET), offer new possibilities to understand how the human brain works in health and disease. This includes methods to detect subtle regional changes in the cerebrovascular system integrity. Here, we focus on the neurovascular imaging techniques to evaluate regional BBB permeability (dynamic contrast-enhanced MRI), regional CBF changes (arterial spin labeling- and functional-MRI), vascular pathology (structural MRI), and cerebral metabolism (PET) in the living human brain, and examine how they can inform about neurovascular dysfunction and vascular pathophysiology in dementia and AD. Altogether, these neuroimaging approaches will continue to elucidate the spatio-temporal progression of vascular and neurodegenerative processes in dementia and AD and how they relate to each other.
Collapse
Affiliation(s)
- Axel Montagne
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Daniel A Nation
- Department of Psychology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Judy Pa
- Department of Neurology, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Melanie D Sweeney
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Arthur W Toga
- Department of Neurology, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, 90089, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute and Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
29
|
Right is not always wrong: DTI and fMRI evidence for the reliance of reading comprehension on language-comprehension networks in the right hemisphere. Brain Imaging Behav 2016; 9:19-31. [PMID: 25515348 DOI: 10.1007/s11682-014-9341-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Simple View theory suggests that reading comprehension relies on automatic recognition of words combined with language comprehension. The goal of the current study was to examine the structural and functional connectivity in networks supporting reading comprehension and their relationship with language comprehension within 7-9 year old children using Diffusion Tensor Imaging (DTI) and fMRI during a Sentence Picture Matching task. Fractional Anisotropy (FA) values in the left and right Inferior Longitudinal Fasciculus (ILF) and Superior Longitudinal Fasciculus (SLF), known language-related tracts, were correlated from DTI data with scores from the Woodcock-Johnson III (WJ-III) Passage Comprehension sub-test. Brodmann areas most proximal to white-matter regions with significant correlation to Passage Comprehension scores were chosen as Regions-of-Interest (ROIs) and used as seeds in a functional connectivity analysis using the Sentence Picture Matching task. The correlation between percentile scores for the WJ-III Passage Comprehension subtest and the FA values in the right and left ILF and SLF indicated positive correlation in language-related ROIs, with greater distribution in the right hemisphere, which in turn showed strong connectivity in the fMRI data from the Sentence Picture Matching task. These results support the participation of the right hemisphere in reading comprehension and may provide physiologic support for a distinction between different types of reading comprehension deficits vs difficulties in technical reading.
Collapse
|
30
|
Relationship between receptive vocabulary and the neural substrates for story processing in preschoolers. Brain Imaging Behav 2014; 9:43-55. [DOI: 10.1007/s11682-014-9342-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Schmithorst VJ, Vannest J, Lee G, Hernandez-Garcia L, Plante E, Rajagopal A, Holland SK. Evidence that neurovascular coupling underlying the BOLD effect increases with age during childhood. Hum Brain Mapp 2014; 36:1-15. [PMID: 25137219 DOI: 10.1002/hbm.22608] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/30/2014] [Accepted: 08/03/2014] [Indexed: 12/15/2022] Open
Abstract
Functional MRI using blood-oxygen-level-dependent (BOLD) imaging has provided unprecedented insights into the maturation of the human brain. Task-based fMRI studies have shown BOLD signal increases with age during development (ages 5-18) for many cognitive domains such as language and executive function, while functional connectivity (resting-state) fMRI studies investigating regionally synchronous BOLD fluctuations have revealed a developing functional organization of the brain from a local into a more distributed architecture. However, interpretation of these results is confounded by the fact that the BOLD signal is directly related to blood oxygenation driven by changes in blood flow and only indirectly related to neuronal activity, and may thus be affected by changing neuronal-vascular coupling. BOLD signal and cerebral blood flow (CBF) were measured simultaneously in a cohort of 113 typically developing awake participants ages 3-18 performing a narrative comprehension task. Using a novel voxelwise wild bootstrap analysis technique, an increased ratio of BOLD signal to relative CBF signal change with age (indicative of increased neuronal-vascular coupling) was seen in the middle temporal gyri and the left inferior frontal gyrus. Additionally, evidence of decreased relative oxygen metabolism (indicative of decreased neuronal activity) with age was found in the same regions. These findings raise concern that results of developmental BOLD studies cannot be unambiguously attributed to neuronal activity. Astrocytes and astrocytic processes may significantly affect the maturing functional architecture of the brain, consistent with recent research demonstrating a key role for astrocytes in mediating increased CBF following neuronal activity and for astrocyte processes in modulating synaptic connectivity.
Collapse
Affiliation(s)
- Vincent J Schmithorst
- Pediatric Neuroimaging Research Consortium, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | | | | | | | | | | | | | | |
Collapse
|