1
|
Scher MS. "The First Thousand Days" Define a Fetal/Neonatal Neurology Program. Front Pediatr 2021; 9:683138. [PMID: 34408995 PMCID: PMC8365757 DOI: 10.3389/fped.2021.683138] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023] Open
Abstract
Gene-environment interactions begin at conception to influence maternal/placental/fetal triads, neonates, and children with short- and long-term effects on brain development. Life-long developmental neuroplasticity more likely results during critical/sensitive periods of brain maturation over these first 1,000 days. A fetal/neonatal program (FNNP) applying this perspective better identifies trimester-specific mechanisms affecting the maternal/placental/fetal (MPF) triad, expressed as brain malformations and destructive lesions. Maladaptive MPF triad interactions impair progenitor neuronal/glial populations within transient embryonic/fetal brain structures by processes such as maternal immune activation. Destructive fetal brain lesions later in pregnancy result from ischemic placental syndromes associated with the great obstetrical syndromes. Trimester-specific MPF triad diseases may negatively impact labor and delivery outcomes. Neonatal neurocritical care addresses the symptomatic minority who express the great neonatal neurological syndromes: encephalopathy, seizures, stroke, and encephalopathy of prematurity. The asymptomatic majority present with neurologic disorders before 2 years of age without prior detection. The developmental principle of ontogenetic adaptation helps guide the diagnostic process during the first 1,000 days to identify more phenotypes using systems-biology analyses. This strategy will foster innovative interdisciplinary diagnostic/therapeutic pathways, educational curricula, and research agenda among multiple FNNP. Effective early-life diagnostic/therapeutic programs will help reduce neurologic disease burden across the lifespan and successive generations.
Collapse
Affiliation(s)
- Mark S Scher
- Division of Pediatric Neurology, Department of Pediatrics, Fetal/Neonatal Neurology Program, Emeritus Scholar Tenured Full Professor in Pediatrics and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
2
|
Wang W, Liu X, Yang Z, Shen H, Liu L, Yu Y, Zhang T. Levodopa Improves Cognitive Function and the Deficits of Structural Synaptic Plasticity in Hippocampus Induced by Global Cerebral Ischemia/Reperfusion Injury in Rats. Front Neurosci 2020; 14:586321. [PMID: 33328857 PMCID: PMC7734175 DOI: 10.3389/fnins.2020.586321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
The cognitive impairment caused by cerebral ischemia/reperfusion is an unsolved problem in the field of international neural rehabilitation. Not only ameliorates the consciousness level of certain patients who suffered from ischemia-reperfusion injury and were comatose for a long time period after cerebral resuscitation treatment, but levodopa also improves the symptoms of neurological deficits in rats with global cerebral ischemia-reperfusion injury. However, Levodopa has not been widely used as a brain protection drug after cardiopulmonary resuscitation, because of its unclear repair mechanism. Levodopa was used to study the neuroplasticity in the hippocampus of global cerebral ischemia/reperfusion injury rat model, established by Pulsinelli's four-vessel occlusion method. Levodopa was injected intraperitoneally at 50 mg/kg/d for 7 consecutive days after 1st day of surgery. The modified neurological function score, Morris water maze, magnetic resonance imaging, Nissl and TH staining, electron microscopy and western blot were used in the present study. The results showed that levodopa improved the neurological function and learning and memory of rats after global cerebral ischemia/reperfusion injury, improved the integrity of white matter, and density of gray matter in the hippocampus, increased the number of synapses, reduced the delayed neuronal death, and increased the expression of synaptic plasticity-related proteins (BDNF, TrkB, PSD95, and Drebrin) in the hippocampus. In conclusion, levodopa can improve cognitive function after global cerebral ischemia/reperfusion injury by enhancing the synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Wenzhu Wang
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xu Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Zhengyi Yang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Hui Shen
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Lixu Liu
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China.,Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Tong Zhang
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China.,Institute of Automation, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Vázquez-Borsetti P, Acuña A, Soliño M, López-Costa JJ, Kargieman L, Loidl FC. Deep hypothermia prevents striatal alterations produced by perinatal asphyxia: Implications for the prevention of dyskinesia and psychosis. J Comp Neurol 2020; 528:2679-2694. [PMID: 32301107 DOI: 10.1002/cne.24925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022]
Abstract
GABAergic medium spiny neurons are the main neuronal population in the striatum. Calbindin is preferentially expressed in medium spiny neurons involved in the indirect pathway. The aim of the present work is to analyze the effect of perinatal asphyxia on different subpopulations of GABAergic neurons in the striatum and to assess the outcome of deep therapeutic hypothermia. The uterus of pregnant rats was removed by cesarean section and the fetuses were exposed to hypoxia by immersion in water (19 min) at 37°C (perinatal asphyxia). The hypothermic group was exposed to 10°C during 30 min after perinatal asphyxia. The rats were euthanized at the age of one month (adolescent/adult rats), their brains were dissected out and coronal sections were immunolabeled for calbindin, calretinin, NeuN, and reelin. Reelin+ cells showed no staining in the striatum besides subventricular zone. The perinatal asphyxia (PA) group showed a significant decrease in calbindin neurons and a paradoxical increase in neurons estimated by NeuN staining. Moreover, calretinin+ cells, a specific subpopulation of GABAergic neurons, showed an increase caused by PA. Deep hypothermia reversed most of these alterations probably by protecting calbindin neurons. Similarly, there was a reduction of the diameter of the anterior commissure produced by the asphyxia that was prevented by hypothermic treatment.
Collapse
Affiliation(s)
- Pablo Vázquez-Borsetti
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Buenos Aires, Argentina
| | - Andrés Acuña
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Buenos Aires, Argentina
| | - Manuel Soliño
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Buenos Aires, Argentina
| | - Juan José López-Costa
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Buenos Aires, Argentina
| | - Lucila Kargieman
- IFIBYNE (UBA-CONICET) Instituto de Fisiología, Biología Molecular y Neurociencias-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fabián César Loidl
- Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis", UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Lee TH, Yang JT, Lin JR, Hu CJ, Chou WH, Lin CP, Chi NF. Protective effects of ischemic preconditioning against neuronal apoptosis and dendritic injury in the hippocampus are age-dependent. J Neurochem 2020; 155:430-447. [PMID: 32314365 DOI: 10.1111/jnc.15029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
Ischemic preconditioning with non-lethal ischemia can be protective against lethal forebrain ischemia. We hypothesized that aging may aggravate ischemic susceptibility and reduce brain plasticity against preconditioning. Magnetic resonance diffusion tensor imaging (DTI) is a sensitive tool to detect brain integrity and white matter architecture. This study used DTI and histopathology to investigate the effect of aging on ischemic preconditioning. In this study, adult and middle-aged male Mongolian gerbils were subjected to non-lethal 5-min forebrain ischemia (ischemic preconditioning) or sham-operation, followed by 3 days of reperfusion, and then lethal 15-min forebrain ischemia. A 9.4-Tesla MR imaging system was used to study DTI indices, namely fractional anisotropy (FA), mean diffusivity (MD), and intervoxel coherence (IC) in the hippocampal CA1 and dentate gyrus (DG) areas. In situ expressions of microtubule-associated protein 2 (MAP2, dendritic marker protein) and apoptosis were also examined. The 5-min ischemia did not cause dendritic and neuronal injury and any significant change in DTI indices and MAP2 in adult and middle-aged gerbils. The 15-min ischemia-induced significant delayed neuronal apoptosis and early dendritic injury evidenced by DTI and MAP2 studies in both CA1 and DG areas with more severe injury in middle-aged gerbils than adult gerbils. Ischemic preconditioning could improve neuronal apoptosis in CA1 area and dendritic integrity in both CA1 and DG areas with better improvement in adult gerbils than middle-aged gerbils. This study thus suggests an age-dependent protective effect of ischemic preconditioning against both neuronal apoptosis and dendritic injury in hippocampus after forebrain ischemia.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Center and Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chiayi Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jr-Rung Lin
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Wen-Hai Chou
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Nai-Fang Chi
- Department of Neurology, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
5
|
Drobyshevsky A, Quinlan KA. Spinal cord injury in hypertonic newborns after antenatal hypoxia-ischemia in a rabbit model of cerebral palsy. Exp Neurol 2017; 293:13-26. [PMID: 28347765 DOI: 10.1016/j.expneurol.2017.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 12/25/2022]
Abstract
While antenatal hypoxia-ischemia (H-I) is a well-established cause of brain injury, the effects of H-I on the spinal cord remain undefined. This study examined whether hypertonia in rabbits was accompanied by changes in spinal architecture. Rabbit dams underwent global fetal H-I at embryonic day 25 for 40min. High resolution diffusion tensor imaging was performed on fixed neonatal CNS. Fractional anisotropy (FA) and regional volumetric measurements were compared between kits with and without hypertonia after H-I and sham controls using Tract Based Spatial Statistics. Hypertonic kits showed evidence of damage from hypoxia not only in the brain, but in spinal cord as well. Hypertonic kits showed reduced FA and thickness in corticospinal tracts, external capsule, fimbria, and in white and gray matter of both cervical and lumbar spinal cord. Dorsal white matter of the spinal cord was the exception, where there was thickening and increased FA in hypertonic kits. Direct damage to the spinal cord was demonstrated in a subset of dams imaged during H-I with a 3T magnetic resonance scanner, where apparent diffusion coefficient in fetal spinal cords acutely decreased during hypoxia. Hypertonic kits showed subsequent decreases in lumbar motoneuron counts and extensive TUNEL- and Fluoro-Jade C-positive labeling was present in the spinal cord 48h after H-I, demonstrating spinal neurodegeneration. We speculate that global H-I causes significant loss of both spinal white and gray matter in hypertonic newborns due to direct H-I injury to the spinal cord as well as due to upstream brain injury and consequent loss of descending projections.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatric, NorthShore University HealthSystem Research Institute, Evanston, IL, United States.
| | - Katharina A Quinlan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|