1
|
Ren H, Yang D, Xu H, Tong X, Zhao X, Wang Q, Sun Y, Ou X, Jia J, You H, Wang Z, Yang Z. The staging of nonalcoholic fatty liver disease fibrosis: A comparative study of MR elastography and the quantitative DCE-MRI exchange model. Heliyon 2024; 10:e24558. [PMID: 38312594 PMCID: PMC10835329 DOI: 10.1016/j.heliyon.2024.e24558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Objectives To evaluate the efficacy and image processing time of the dynamic contrast-enhanced MRI (DCE-MRI) exchange model in liver fibrosis staging and compare it to the efficacy of magnetic resonance elastography (MRE). Methods The subjects were 45 patients with nonalcoholic fatty liver disease (NAFLD) who underwent MRE and DCE-MRI in our hospital. Liver biopsy results were available for all patients. Spearman rank correlation coefficients were used to compare the correlations among MRE, DCE-MRI and liver fibrosis parameters. Quantitative DCE-MRI parameters, MRE-derived liver stiffness measurement (LSM), and the results of a combined DCE-MRI + MRE logistic regression model were compared in terms of the area under the receiver operating characteristic curve (AUC). We also compared the scanning and postprocessing times of the MRE and DCE-MRI techniques. Results The correlation coefficients between the following parameters of interest and liver fibrosis were as follows: capillary permeability-surface area product (PS; DCE-MRI parameter), -0.761; portal blood flow (Fp; DCE-MRI parameter), -0.754; MRE-LSM, 0.835. Some DCE-MRI parameters (PS, Fp) had slightly greater AUC values than MRE-LSM for diagnosing the presence or absence of liver fibrosis, and the combined model had the highest AUC value for all stages except F4, but there was no significant difference in the diagnostic efficacy of the DCE-MRI, MRE, and combined models for any stage of fibrosis. The average scanning times for MRE and DCE-MRI were 17 s and 330 s, respectively, and the average postprocessing times were 45.5 s and 342.7 s, respectively. Conclusions In the absence of MRE equipment, DCE-MRI represents an alternative technique. However, MRE is a quicker and simpler method for assessing fibrosis than DCE-MRI in the clinic.
Collapse
Affiliation(s)
- Hao Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Xiaofei Tong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Qianyi Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| |
Collapse
|
2
|
Zheng S, He K, Zhang L, Li M, Zhang H, Gao P. Conventional and artificial intelligence-based computed tomography and magnetic resonance imaging quantitative techniques for non-invasive liver fibrosis staging. Eur J Radiol 2023; 165:110912. [PMID: 37290363 DOI: 10.1016/j.ejrad.2023.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Chronic liver disease (CLD) ultimately develops into liver fibrosis and cirrhosis and is a major public health problem globally. The assessment of liver fibrosis is important for patients with CLD for prognostication, treatment decisions, and surveillance. Liver biopsies are traditionally performed to determine the stage of liver fibrosis. However, the risks of complications and technical limitations restrict their application to screening and sequential monitoring in clinical practice. CT and MRI are essential for evaluating cirrhosis-associated complications in patients with CLD, and several non-invasive methods based on them have been proposed. Artificial intelligence (AI) techniques have also been applied to stage liver fibrosis. This review aimed to explore the values of conventional and AI-based CT and MRI quantitative techniques for non-invasive liver fibrosis staging and summarized their diagnostic performance, advantages, and limitations.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Kan He
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Lei Zhang
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Mingyang Li
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Huimao Zhang
- Department of Radiology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| | - Pujun Gao
- Department of Hepatology, the First Hospital of Jilin University, No. 71 Xinmin Street, Changchun, Jilin, China.
| |
Collapse
|
3
|
Tokorodani R, Kume T, Daisaki H, Hayashi N, Iwasa H, Yamagami T. Combining 99mTc-GSA single-photon emission-computed tomography and Gd-EOB-DTPA-enhanced magnetic resonance imaging for staging liver fibrosis. Medicine (Baltimore) 2023; 102:e32975. [PMID: 36800578 PMCID: PMC9936016 DOI: 10.1097/md.0000000000032975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Preoperative assessment of the degree of liver fibrosis is important to determine treatment strategies. In this study, galactosyl human serum albumin single-photon emission-computed tomography and ethoxybenzyl (EOB) contrast-enhanced magnetic resonance imaging (MRI) were used to assess the changes in hepatocyte function after liver fibrosis, and the standardized uptake value (SUV) was combined with gadolinium EOB-diethylenetriaminepentaacetic acid to evaluate its added value for liver fibrosis staging. A total of 484 patients diagnosed with hepatocellular carcinoma who underwent liver resection between January 2010 and August 2018 were included. Resected liver specimens were classified based on pathological findings into nonfibrotic and fibrotic groups (stratified according to the Ludwig scale). Galactosyl human serum albumin-single-photon emission-computed tomography and EOB contrast-enhanced MRI examinations were performed, and the mean SUVs (SUVmean) and contrast enhancement indices (CEIs) were obtained. The diagnostic value of the acquired SUV and CEIs for fibrosis was assessed by calculating the area under the receiver operating characteristic curve (AUC). In the receiver operating characteristic analysis, SUV + CEI showed the highest AUC in both fibrosis groups. In particular, in the comparison between fibrosis groups, SUV + CEI showed significantly higher AUCs than SUV and CEI alone in discriminating between fibrosis (F3 and 4) and no or mild fibrosis (F0 and 2) (AUC: 0.879, vs SUV [P = 0.008], vs. CEI [P = 0.023]), suggesting that the combination of SUV + CEI has greater diagnostic performance than the individual indices. Combining the SUV and CEI provides high accuracy for grading liver fibrosis, especially in differentiating between grades F0 and 2 and F3-4. SUV and gadolinium EOB-diethylenetriaminepentaacetic acid-enhanced MRI can be noninvasive diagnostic methods to guide the selection of clinical treatment options for patients with liver diseases.
Collapse
Affiliation(s)
- Ryotaro Tokorodani
- Division of Radiology, Department of Medical Technology, Kochi Medical School Hospital, Nankoku, Japan
- * Correspondence: Ryotaro Tokorodani, Department of Radiology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan (e-mail: )
| | - Toshiaki Kume
- Department of Radiological Technology, Kochi Health Sciences Center, Kochi, Japan
| | - Hiromitu Daisaki
- Department of Gunma Prefectural College of Health Sciences, Maebashi, Japan
| | - Naoya Hayashi
- Division of Radiology, Department of Medical Technology, Kochi Medical School Hospital, Nankoku, Japan
| | - Hitomi Iwasa
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Nankoku, Japan
| | - Takuji Yamagami
- Department of Diagnostic and Interventional Radiology, Kochi Medical School, Kochi University, Nankoku, Japan
| |
Collapse
|
4
|
Yoon JH, Lee JM, Yu MH, Hur BY, Grimm R, Sourbron S, Chandarana H, Son Y, Basak S, Lee KB, Yi NJ, Lee KW, Suh KS. Simultaneous evaluation of perfusion and morphology using GRASP MRI in hepatic fibrosis. Eur Radiol 2021; 32:34-45. [PMID: 34120229 DOI: 10.1007/s00330-021-08087-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To determine if golden-angle radial sparse parallel (GRASP) dynamic contrast-enhanced (DCE)-MRI allows simultaneous evaluation of perfusion and morphology in liver fibrosis. METHODS Participants who were scheduled for liver biopsy or resection were enrolled (NCT02480972). Images were reconstructed at 12-s temporal resolution for morphologic assessment and at 3.3-s temporal resolution for quantitative evaluation. The image quality of the morphologic images was assessed on a four-point scale, and the Liver Imaging Reporting and Data System score was recorded for hepatic observations. Comparisons were made between quantitative parameters of DCE-MRI for the different fibrosis stages, and for hepatocellular carcinoma (HCCs) with different LR features. RESULTS DCE-MRI of 64 participants (male = 48) were analyzed. The overall image quality consistently stood at 3.5 ± 0.4 to 3.7 ± 0.4 throughout the exam. Portal blood flow significantly decreased in participants with F2-F3 (n = 18, 175 ± 110 mL/100 mL/min) and F4 (n = 12, 98 ± 47 mL/100 mL/min) compared with those in participants with F0-F1 (n = 34, 283 ± 178 mL/100 mL/min, p < 0.05 for all). In participants with F4, the arterial fraction and extracellular volume were significantly higher than those in participants with F0-F1 and F2-F3 (p < 0.05). Compared with HCCs showing non-LR-M features (n = 16), HCCs with LR-M (n = 5) had a significantly prolonged mean transit time and lower arterial blood flow (p < 0.05). CONCLUSIONS Liver MRI using GRASP obtains both sufficient spatial resolution for confident diagnosis and high temporal resolution for pharmacokinetic modeling. Significant differences were found between the MRI-derived portal blood flow at different hepatic fibrosis stages. KEY POINTS A single MRI examination is able to provide both images with sufficient spatial resolution for anatomic evaluation and those with high temporal resolution for pharmacokinetic modeling. Portal blood flow was significantly lower in clinically significant hepatic fibrosis and mean transit time and extracellular volume increased in cirrhosis, compared with those in no or mild hepatic fibrosis. HCCs with different LR features showed different quantitative parameters of DCE-MRI: longer mean transit time and lower arterial flow were observed in HCCs with LR-M features.
Collapse
Affiliation(s)
- Jeong Hee Yoon
- Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jeong Min Lee
- Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Institute of Radiation Medicine, Seoul National University Medical Research Center, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea.
| | - Mi Hye Yu
- Radiology, Konkuk University School of Medicine, Seoul, 05080, Republic of Korea
| | - Bo Yun Hur
- Radiology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, 06236, Republic of Korea
| | | | - Steven Sourbron
- Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), New York, NY, USA.,Department of Radiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Yohan Son
- Siemens Healthcare Korea, Seoul, 03737, Republic of Korea
| | - Susmita Basak
- Biomedical Imaging Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Kyoung-Bun Lee
- Pathology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| | - Nam-Joon Yi
- Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| | - Kwang-Woong Lee
- Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| | - Kyung-Suk Suh
- Surgery, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03087, Republic of Korea
| |
Collapse
|
5
|
Stocker D, Hectors S, Bane O, Vietti-Violi N, Said D, Kennedy P, Cuevas J, Cunha GM, Sirlin CB, Fowler KJ, Lewis S, Taouli B. Dynamic contrast-enhanced MRI perfusion quantification in hepatocellular carcinoma: comparison of gadoxetate disodium and gadobenate dimeglumine. Eur Radiol 2021; 31:9306-9315. [PMID: 34043055 DOI: 10.1007/s00330-021-08068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/22/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES (1) To assess the quality of the arterial input function (AIF) during dynamic contrast-enhanced (DCE) MRI of the liver and (2) to quantify perfusion parameters of hepatocellular carcinoma (HCC) and liver parenchyma during the first 3 min post-contrast injection with DCE-MRI using gadoxetate disodium compared to gadobenate dimeglumine (Gd-BOPTA) in different patient populations. METHODS In this prospective study, we evaluated 66 patients with 83 HCCs who underwent DCE-MRI, using gadoxetate disodium (group 1, n = 28) or Gd-BOPTA (group 2, n = 38). AIF qualitative and quantitative features were assessed. Perfusion parameters (based on the initial 3 min post-contrast) were extracted in tumours and liver parenchyma, including model-free parameters (time-to-peak enhancement (TTP), time-to-washout) and modelled parameters (arterial flow (Fa), portal venous flow (Fp), total flow (Ft), arterial fraction, mean transit time (MTT), distribution volume (DV)). In addition, lesion-to-liver contrast ratios (LLCRs) were measured. Fisher's exact tests and Mann-Whitney U tests were used to compare the two groups. RESULTS AIF quality, modelled and model-free perfusion parameters in HCC were similar between the 2 groups (p = 0.054-0.932). Liver parenchymal flow was lower and liver enhancement occurred later in group 1 vs group 2 (Fp, p = 0.002; Ft, p = 0.001; TTP, MTT, all p < 0.001), while there were no significant differences in tumour LLCR (max. positive LLCR, p = 0.230; max. negative LLCR, p = 0.317). CONCLUSION Gadoxetate disodium provides comparable AIF quality and HCC perfusion parameters compared to Gd-BOPTA during dynamic phases. Despite delayed and decreased liver enhancement with gadoxetate disodium, LLCRs were equivalent between contrast agents, indicating similar tumour conspicuity. KEY POINTS • Arterial input function quality, modelled, and model-free dynamic parameters measured in hepatocellular carcinoma are similar in patients receiving gadoxetate disodium or gadobenate dimeglumine during the first 3 min post injection. • Gadoxetate disodium and gadobenate dimeglumine show similar lesion-to-liver contrast ratios during dynamic phases in patients with HCC. • There is lower portal and lower total hepatic flow and longer hepatic mean transit time and time-to-peak with gadoxetate disodium compared to gadobenate dimeglumine.
Collapse
Affiliation(s)
- Daniel Stocker
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stefanie Hectors
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Naik Vietti-Violi
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Daniela Said
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Universidad de los Andes, Santiago, Chile
| | - Paul Kennedy
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Jordan Cuevas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Guilherme M Cunha
- Liver Imaging Group, Radiology, University of California-San Diego, San Diego, CA, USA
| | - Claude B Sirlin
- Liver Imaging Group, Radiology, University of California-San Diego, San Diego, CA, USA
| | - Kathryn J Fowler
- Liver Imaging Group, Radiology, University of California-San Diego, San Diego, CA, USA
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
6
|
Lai LY, Huang MP, Su S, Shu J. Liver Fibrosis Staging with Gadolinium Ethoxybenzyl Diethylenetriamine Penta-Acetic Acid-enhanced: A Systematic Review and Meta-analysis. Curr Med Imaging 2020; 17:854-863. [PMID: 33256584 DOI: 10.2174/1573405616666201130101229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/25/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE While liver biopsy is the golden standard for liver-fibrosis diagnosis, it is also invasive and has many limitations. Non-invasive techniques such as Magnetic Resonance Imaging (MRI) need to be further developed for liver fibrosis staging. This study aimed to evaluate the diagnostic accuracy of Gadolinium Ethoxybenzyl Diethylenetriamine Penta-acetic Acid (Gd-EOBDTPA)- enhanced MRI for liver fibrosis through systematic review and meta-analysis. METHODS This study comprehensively searched relevant article in PubMed, Embase, and the Cochrane Library published from 2004 to 2018 to find studies analyzing the diagnostic accuracy of Gd-EOB-DTPA-enhanced MRI for liver fibrosis. Two reviewers independently screened the retrieved articles, extracted the required data from the included studies, and evaluated the methodological quality of the studies. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and Summary Receiver Operating Characteristics (SROC) curve were assessed. RESULTS This study finally included 16 studies (n = 1,599) and selected a random-effects model based on the results of the I2 statistic to combine them. The areas under the SROC curve for the detection of F1 or greater, F2 or greater, F3 or greater, or F4 liver fibrosis were 0.8669, 0.8399, 0.8481, and 0.8858, respectively. CONCLUSION Gd-EOB-DTPA-enhanced MRI showed a good diagnostic performance for staging liver fibrosis, especially for F4 liver fibrosis.
Collapse
Affiliation(s)
- Lu-Yao Lai
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Meng-Ping Huang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Combination of hepatocyte fraction and diffusion-weighted imaging as a predictor in quantitative hepatic fibrosis evaluation. Abdom Radiol (NY) 2020; 45:3681-3689. [PMID: 32266505 DOI: 10.1007/s00261-020-02520-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the performance of the combined hepatocyte fraction (HepF) and apparent diffusion coefficient (ADC) values to stage hepatic fibrosis (HF) in patients with hepatitis B/C. MATERIALS AND METHODS A total of 281 patients with hepatitis B/C prospectively underwent gadoxetate disodium-based T1 mapping and diffusion-weighted imaging. HepF was determined from pre and postcontrast T1 mapping with pharmacokinetics. The independent predictors of the HF stage (S0-4) were identified from HepF, ADC, conventional T1-based parameters, and age using a logistic regression analysis. The performances of independent and combined predictors in diagnosing various HF stages were compared by analyzing receiver operating characteristic curves. The intraclass correlation coefficient (ICC) was used to assess the interobserver reproducibility of each predictor. RESULTS In total, 167 patients with various stages of HF were included. All measurements had excellent interobserver agreement (ICC ≥ 0.75). The hepatic relative enhancement, HepF ,and ADC values were significantly different among various HF stages (p < 0.05). The HepF and ADC were independent predictors of > S0, > S1, > S2 , and > S3 disease (p < 0.05). T1Liver, T1Spleen, and T1Liver/Spleen were independent predictors of S > 2 disease (p < 0.05). The performance of HepF combined with the ADC (area under the curve (AUC) = 0.84-0.95) was higher than HepF (AUC = 0.79-0.92) or ADC (AUC = 0.82-0.89) alone in diagnosing > S0, > S1, > S2 , and > S3 disease. CONCLUSION The combined predictor of HepF and ADC shows acceptable performance for staging HF.
Collapse
|
8
|
Caussy C, Johansson L. Magnetic resonance-based biomarkers in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Endocrinol Diabetes Metab 2020; 3:e00134. [PMID: 33102797 PMCID: PMC7576227 DOI: 10.1002/edm2.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/16/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease is a growing epidemic affecting 30% of the adult population in the Western world. Its progressive form, nonalcoholic steatohepatitis (NASH), is associated with an increased risk of advanced fibrosis, cirrhosis and liver-related mortality. Therefore, the detection of NAFLD and risk stratification according to the severity of the disease is crucial for the management of patients with NAFLD. Liver biopsy for such risk stratification strategies is limited by its cost and risks; therefore, noninvasive alternatives have been developed. Among noninvasive biomarkers developed in NAFLD, magnetic resonance (MR)-based biomarkers have emerged as key noninvasive biomarkers in NAFLD with the ability to accurately detect hepatic steatosis and liver fibrosis. The potential utility of MRI for the detection of NASH and functional liver assessment has also recently emerged. In the current review, we will discuss the data supporting the utility of MR-based biomarker for the detection of features of NAFLD and its potential use in clinical practice and clinical research in NAFLD.
Collapse
Affiliation(s)
- Cyrielle Caussy
- Univ LyonCarMen LaboratoryINSERMINRAINSA LyonUniversité Claude Bernard Lyon 1Pierre‐BéniteFrance
- Hospices Civils de LyonDépartement EndocrinologieDiabète et NutritionHôpital Lyon SudPierre‐BéniteFrance
| | | |
Collapse
|
9
|
Hepatic Arterial Blood Flow Index Is Associated with the Degree of Liver Fibrosis in Patients with Chronic Hepatitis B Virus Infection. HEPATITIS MONTHLY 2020. [DOI: 10.5812/hepatmon.98323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Liver fibrosis due to Hepatitis B Virus (HBV) infection is an important public health concern worldwide. An accurate assessment of liver fibrosis is crucial for the identification of susceptible patients to severe clinical conditions and selection of treatment for patients with Chronic Hepatitis B (CHB) infection. Today, the development of simple, accurate, cost-effective, and non-invasive liver fibrosis tests is essential in clinical practice. Methods: According to liver biopsy as the reference standard, we compared the efficacy of hepatic arterial blood flow index (HBI) versus liver stiffness measurement (LSM), aspartate aminotransferase-to-platelet count ratio index (APRI), and fibrosis index based on 4 factors (FIB-4) to predict various degrees of liver fibrosis among 87 patients with CHB infection. Results: Spearman’s rank correlation coefficient of HBI versus the degree of liver fibrosis, according to the METAVIR scoring system, was 0.672 (P < 0.001). The area under the receiver operating characteristic curve (AUROC) of HBI (0.884; 95% CI: 0.806 - 0.961; P = 0.000) was greater than that of LSM (0.807; 95% CI: 0.703 - 0.912; P = 0.00), APRI (0.684; 95% CI: 0.556 - 0.812; P = 0.009), and FIB-4 (0.757; 95% CI: 0.641 - 0.873; P = 0.000) for the diagnostic analysis of significant liver fibrosis (≥ F2); similar results were obtained for the prediction of other liver fibrosis stages. Conclusions: The present findings shed new light on the association of HBI with the degree of liver fibrosis in patients with CHB infection. Hepatic Arterial Perfusion Scintigraphy (HAPS) with the measurement of HBI is a promising diagnostic method of liver fibrosis stage, which can guide therapy in CHB patients, although further large-scale studies are needed.
Collapse
|
10
|
Forsgren MF, Nasr P, Karlsson M, Dahlström N, Norén B, Ignatova S, Sinkus R, Cedersund G, Leinhard OD, Ekstedt M, Kechagias S, Lundberg P. Biomarkers of liver fibrosis: prospective comparison of multimodal magnetic resonance, serum algorithms and transient elastography. Scand J Gastroenterol 2020; 55:848-859. [PMID: 32684060 DOI: 10.1080/00365521.2020.1786599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Accurate biomarkers for quantifying liver fibrosis are important for clinical practice and trial end-points. We compared the diagnostic performance of magnetic resonance imaging (MRI), including gadoxetate-enhanced MRI and 31P-MR spectroscopy, with fibrosis stage and serum fibrosis algorithms in a clinical setting. Also, in a subset of patients, MR- and transient elastography (MRE and TE) was evaluated when available. METHODS Patients were recruited prospectively if they were scheduled to undergo liver biopsy on a clinical indication due to elevated liver enzyme levels without decompensated cirrhosis. Within a month of the clinical work-up, an MR-examination and liver needle biopsy were performed on the same day. Based on late-phase gadoxetate-enhanced MRI, a mathematical model calculated hepatobiliary function (relating to OATP1 and MRP2). The hepatocyte gadoxetate uptake rate (KHep) and the normalised liver-to-spleen contrast ratio (LSC_N10) were also calculated. Nine serum fibrosis algorithms were investigated (GUCI, King's Score, APRI, FIB-4, Lok-Index, NIKEI, NASH-CRN regression score, Forns' score, and NAFLD-fibrosis score). RESULTS The diagnostic performance (AUROC) for identification of significant fibrosis (F2-4) was 0.78, 0.80, 0.69, and 0.78 for MRE, TE, LSC_N10, and GUCI, respectively. For the identification of advanced fibrosis (F3-4), the AUROCs were 0.93, 0.84, 0.81, and 0.82 respectively. CONCLUSION MRE and TE were superior for non-invasive identification of significant fibrosis. Serum fibrosis algorithms developed for specific liver diseases are applicable in this cohort of diverse liver diseases aetiologies. Gadoxetate-MRI was sufficiently sensitive to detect the low function losses associated with fibrosis. None was able to efficiently distinguish between stages within the low fibrosis stages.Lay summaryExcessive accumulation of scar tissue, fibrosis, in the liver is an important aspect in chronic liver disease. To replace the invasive needle biopsy, we have explored non-invasive methods to assess liver fibrosis. In our study we found that elastographic methods, which assess the mechanical properties of the liver, are superior in assessing fibrosis in a clinical setting. Of interest from a clinical trial point-of-view, none of the tested methods was sufficiently accurate to distinguish between adjacent moderate fibrosis stages.
Collapse
Affiliation(s)
- Mikael F Forsgren
- Department of Radiation Physics, Department of and Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Patrik Nasr
- Department of Gastroenterology and Hepatology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Markus Karlsson
- Department of Radiation Physics, Department of and Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Nils Dahlström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Radiology, Department of and Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bengt Norén
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Radiology, Department of and Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Simone Ignatova
- Department of Clinical Pathology and Clinical Genetics, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ralph Sinkus
- Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
| | - Gunnar Cedersund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Department of Radiation Physics, Department of and Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Department of Gastroenterology and Hepatology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Stergios Kechagias
- Department of Gastroenterology and Hepatology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Radiation Physics, Department of and Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
11
|
Kromrey ML, Le Bihan D, Ichikawa S, Motosugi U. Diffusion-weighted MRI-based Virtual Elastography for the Assessment of Liver Fibrosis. Radiology 2020; 295:127-135. [DOI: 10.1148/radiol.2020191498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Chen F, Chen YL, Chen TW, Li R, Pu Y, Zhang XM, Li HJ, Tang S, Cao JM, Yang JQ. Liver lobe based intravoxel incoherent motion diffusion weighted imaging in hepatitis B related cirrhosis: Association with child-pugh class and esophageal and gastric fundic varices. Medicine (Baltimore) 2020; 99:e18671. [PMID: 31914057 PMCID: PMC6959964 DOI: 10.1097/md.0000000000018671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/23/2019] [Accepted: 12/06/2019] [Indexed: 12/26/2022] Open
Abstract
Liver cirrhosis is a common chronic progressive liver disease in clinical practice, and intravoxel incoherent motion (IVIM) is a promising magnetic resonance method to assess liver cirrhosis, so our purpose was to investigate association of liver-lobe-based IVIM-derived parameters with hepatitis-B-related cirrhosis and its severity, and esophageal and gastric fundic varices. Seventy-four patients with hepatitis-B-related cirrhotic and 25 healthy volunteers were enrolled and underwent upper abdominal IVIM diffusion-weighted imaging with b-values of 0, 20, 50, 80, 100, 200, 400, 600, and 800 s/mm. IVIM-derived parameters (D, pure molecular diffusion; D, pseudo diffusion; and f, perfusion fraction) of left lateral lobe (LLL), left medial lobe (LML), right lobe (RL), and caudate lobe (CL) were assessed statistically to show their associations with cirrhosis and its severity, and esophageal and gastric fundic varices. In this research, we found that D, D, and f values of LLL, LML, RL, and CL were lower in cirrhotic liver than in normal liver (all P-values <.05). D, D, and f values of LLL, LML, RL, and CL were inversely correlated with Child-Pugh class of cirrhosis (r = -0.236 to -0.606, all P-values <.05). D of each liver lobe, D of LLL and CL, and f of LLL, LML, and CL in patients with esophageal and gastric fundic varices were lower than without the varices (all P-values <.05). D values of RL and CL could best identify cirrhosis, and identify esophageal and gastric fundic varices with areas under receiver-operating characteristic curve of 0.857 and 0.746, respectively. We concluded that liver-lobe-based IVIM-derived parameters can be associated with cirrhosis, and esophageal and gastric fundic varices.
Collapse
Affiliation(s)
- Fan Chen
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing
| | - Yan-li Chen
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing
| | - Tian-wu Chen
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan
| | - Rui Li
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan
| | - Xiao-ming Zhang
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan
| | - Hong-jun Li
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Sun Tang
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan
| | - Jin-ming Cao
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan
| | - Jian-qiong Yang
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan
| |
Collapse
|
13
|
Clinical and Preclinical Imaging of Hepatosplenic Schistosomiasis. Trends Parasitol 2019; 36:206-226. [PMID: 31864895 DOI: 10.1016/j.pt.2019.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 12/12/2022]
Abstract
Schistosomiasis, a neglected tropical disease, is a major cause of chronic morbidity and disability, and premature death. The hepatosplenic form of schistosomiasis is characterized by hepatosplenomegaly, liver fibrosis, portal hypertension, and esophageal varices, whose rupture may cause bleeding and death. We review currently available abdominal imaging modalities and describe their basic principles, strengths, weaknesses, and usefulness in the assessment of hepatosplenic schistosomiasis (HSS). Advanced imaging methods are presented that could be of interest for hepatosplenic schistosomiasis evaluation by yielding morphological, functional, and molecular parameters of disease progression. We also provide a comprehensive view of preclinical imaging studies and current research objectives such as parasite visualization in hosts, follow-up of the host's immune response, and development of noninvasive quantitative methods for liver fibrosis assessment.
Collapse
|
14
|
Keller S, Chapiro J, Brangsch J, Reimann C, Collettini F, Sack I, Savic LJ, Hamm B, Goldberg SN, Makowski M. Quantitative MRI for Assessment of Treatment Outcomes in a Rabbit VX2 Hepatic Tumor Model. J Magn Reson Imaging 2019; 52:668-685. [PMID: 31713973 DOI: 10.1002/jmri.26968] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Globally, primary and secondary liver cancer is one of the most common cancer types, accounting 8.2% of deaths worldwide in 2018. One of the key strategies to improve the patient's prognosis is the early diagnosis, when liver function is still preserved. In hepatocellular carcinoma (HCC), the typical wash-in/wash-out pattern in conventional magnetic resonance imaging (MRI) reaches a sensitivity of 60% and specificity of 96-100%. However, in recent years functional MRI sequences such as hepatocellular-specific gadolinium-based dynamic-contrast enhanced MRI, diffusion-weighted imaging (DWI), and magnetic resonance spectroscopy (MRS) have been demonstrated to improve the evaluation of treatment success and thus the therapeutic decision-making and the patient's outcome. In the preclinical research setting, the VX2 liver rabbit tumor, which once originated from a virus-induced anaplastic squamous cell carcinoma, has played a longstanding role in experimental interventional oncology. Especially the high tumor vascularity allows assessing the treatment response of locoregional interventions such as radiofrequency ablation (RFA) and transcatheter arterial embolization (TACE). Functional MRI has been used to monitor the tumor growth and viability following interventional treatment. Besides promising results, a comprehensive overview of functional MRI sequences used so far in different treatment setting is lacking, thus lowering the comparability of study results. This review offers a comprehensive overview of study protocols, results, and limitations of quantitative MRI sequences applied to evaluate the treatment outcome of VX2 hepatic tumor models, thus generating a unique basis for future MRI studies and potential translation into the clinical setting. Level of Evidence: 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2019. J. Magn. Reson. Imaging 2020;52:668-685.
Collapse
Affiliation(s)
- Sarah Keller
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Julia Brangsch
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin Reimann
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Federico Collettini
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lynn Jeanette Savic
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shraga Nahum Goldberg
- Department of Radiology, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Marcus Makowski
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
15
|
Forsgren MF, Karlsson M, Dahlqvist Leinhard O, Dahlström N, Norén B, Romu T, Ignatova S, Ekstedt M, Kechagias S, Lundberg P, Cedersund G. Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort. PLoS Comput Biol 2019; 15:e1007157. [PMID: 31237870 PMCID: PMC6613709 DOI: 10.1371/journal.pcbi.1007157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/08/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herein, we extended this model, by combining it with a patient-specific non-linear mixed-effects modeling framework. We validated the model by recruiting 100 patients with CLD of varying severity and etiologies. The model explained all MRI data and adequately predicted both timepoints saved for validation and gadoxetate concentrations in both plasma and biopsies. The validated model provides a new and deeper look into how the mechanisms of liver function vary across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate. These mechanisms are shared across many liver functions and can now be estimated from standard clinical images. Being able to accurately and reliably estimate liver function is important when monitoring the progression of patients with liver disease, as well as when identifying drug-induced liver injury during drug development. A promising method for quantifying liver function is to use magnetic resonance imaging combined with gadoxetate. Gadoxetate is a liver-specific contrast agent, which is taken up by the hepatocytes and excreted into the bile. We have previously developed a mechanistic model for gadoxetate dynamics using averaged data from healthy volunteers. In this work, we extended our model with a non-linear mixed-effects modeling framework to give patient-specific estimates of the gadoxetate transport-rates. We validated the model by recruiting 100 patients with liver disease, covering a range of severity and etiologies. All patients underwent an MRI-examination and provided both blood and liver biopsies. Our validated model provides a new and deeper look into how the mechanisms of liver function varies across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate.
Collapse
Affiliation(s)
- Mikael F. Forsgren
- Wolfram MathCore AB and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Markus Karlsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Nils Dahlström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bengt Norén
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Thobias Romu
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Simone Ignatova
- Department of Clinical Pathology and Clinical Genetics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Department of Gastroenterology and Hepatology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Stergios Kechagias
- Department of Gastroenterology and Hepatology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- * E-mail: (PL); (GC)
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail: (PL); (GC)
| |
Collapse
|
16
|
Combined morphological and functional liver MRI using spin-lattice relaxation in the rotating frame (T1ρ) in conjunction with Gadoxetic Acid-enhanced MRI. Sci Rep 2019; 9:2083. [PMID: 30765741 PMCID: PMC6375916 DOI: 10.1038/s41598-018-37689-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Noninvasive early detection of liver cirrhosis and fibrosis is essential for management and therapy. The aim was to investigated whether a combination of the functional parameter relative enhancement (RE) on Gadoxetic Acid magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) and the fibrosis parameter T1ρ distinguishes cirrhosis and healthy liver. We analyzed patients with Gd-EOB-DTPA-enhanced MRI and T1ρ mapping. Signal intensity was measured before and after contrast; RE was calculated. T1ρ was measured with circular regions of interest (T1ρ-cROI). A quotient of RE and T1ρ-cROI was calculated: the fibrosis function quotient (FFQ). Cirrhosis was evaluated based on morphology and secondary changes. 213 datasets were included. The difference between cirrhotic and noncirrhotic liver was 51.11 ms vs. 47.56 ms for T1ρ-cROI (p < 0.001), 0.59 vs. 0.70 for RE (p < 0.001), and 89.53 vs. 70.83 for FFQ (p < 0.001). T1ρ-cROI correlated with RE, r = −0.14 (p < 0.05). RE had an AUC of 0.73. The largest AUC had the FFQ with 0.79. The best cutoff value was 48.34 ms for T1ρ-cROI, 0.70 for RE and 78.59 ms for FFQ. In conclusion T1ρ and RE can distinguish between cirrhotic and noncirrhotic liver. The FFQ, which is the combination of the two, improves diagnostic performance.
Collapse
|
17
|
Li S, Sun X, Chen M, Ying Z, Wan Y, Pi L, Ren B, Cao Q. Liver Fibrosis Conventional and Molecular Imaging Diagnosis Update. JOURNAL OF LIVER 2019; 8:236. [PMID: 31341723 PMCID: PMC6653681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liver fibrosis is a serious, life-threatening disease with high morbidity and mortality that result from diverse causes. Liver biopsy, considered the "gold standard" to diagnose, grade, and stage liver fibrosis, has limitations in terms of invasiveness, cost, sampling variability, inter-observer variability, and the dynamic process of fibrosis. Compelling evidence has demonstrated that all stages of fibrosis are reversible if the injury is removed. There is a clear need for safe, effective, and reliable non-invasive assessment modalities to determine liver fibrosis in order to manage it precisely in personalized medicine. However, conventional imaging methods used to assess morphological and structural changes related to liver fibrosis, including ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI), are only useful in assessing advanced liver disease, including cirrhosis. Functional imaging techniques, including MR elastography (MRE), US elastography, and CT perfusion are useful for assessing moderate to advanced liver fibrosis. MRE is considered the most accurate noninvasive imaging technique, and US elastography is currently the most widely used noninvasive means. However, these modalities are less accurate in early-stage liver fibrosis and some factors affect the accuracy of these techniques. Molecular imaging is a target-specific imaging mechanism that has the potential to accurately diagnose early-stage liver fibrosis. We provide an overview of recent advances in molecular imaging for the diagnosis and staging of liver fibrosis which will enable clinicians to monitor the progression of disease and potentially reverse liver fibrosis. We compare the promising technologies with conventional and functional imaging and assess the utility of molecular imaging in precision and personalized clinical medicine in the early stages of liver fibrosis.
Collapse
Affiliation(s)
- Shujing Li
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Radiology, The first affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei province, P.R.China
| | - Xicui Sun
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Minjie Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhekang Ying
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yamin Wan
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan province, P.R.China
| | - Liya Pi
- Department of Pediatrics in the College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Bin Ren
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Alabama, USA
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Keller S, Sedlacik J, Schuler T, Buchert R, Avanesov M, Zenouzi R, Lohse AW, Kooijman H, Fiehler J, Schramm C, Yamamura J. Prospective comparison of diffusion-weighted MRI and dynamic Gd-EOB-DTPA-enhanced MRI for detection and staging of hepatic fibrosis in primary sclerosing cholangitis. Eur Radiol 2018; 29:818-828. [PMID: 30014204 DOI: 10.1007/s00330-018-5614-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/26/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the diagnostic value of multiparametric magnetic resonance imaging (MRI) including dynamic Gd-EOB-DTPA-enhanced (DCE) and diffusion-weighted (DW) imaging for diagnosis and staging of hepatic fibrosis in primary sclerosing cholangitis (PSC) using transient elastography as a standard reference. MATERIAL AND METHODS Multiparametric MRI was prospectively performed on a 3.0-Tesla scanner in 47 patients (age 43.9±14.3 years). Transient elastography derived liver stiffness measurements (LSM), DCE-MRI derived parameters (hepatocellular uptake rate (Ki), arterial (Fa), portal venous (Fv) and total (Ft) blood flow, mean transit time (MTT), and extracellular volume (Ve)) and the apparent diffusion coefficient (ADC) were calculated. Correlation and univariate analysis of variance with post hoc pairwise comparison were applied to test for differences between LSM derived fibrosis stages (F0/F1, F2/3, F4). ROC curve analysis was used as a performance measure. RESULTS Both ADC and Ki correlated significantly with LSM (r= -0.614; p<0.001 and r= -0.368; p=0.01). The ADC significantly discriminated fibrosis stages F0/1 from F2/3 and F4 (p<0.001). Discrimination of F0/1 from F2/3 and F4 reached a sensitivity/specificity of 0.917/0.821 and 0.8/0.929, respectively. Despite significant inter-subject effect for classification of fibrosis stages, post hoc pairwise comparison was not significant for Ki (p>0.096 for F0/1 from F2/3 and F4). LSM, ADC and Ki were significantly associated with serum-based liver functional tests, disease duration and spleen volume. CONCLUSION DW-MRI provides a higher diagnostic performance for detection of hepatic fibrosis and cirrhosis in PSC patients in comparison to Gd-EOB-DTPA-enhanced DCE-MRI. KEY POINTS • Both ADC and hepatocellular uptake rate (Ki) correlate significantly with liver stiffness (r= -0.614; p<0.001 and r= -0.368; p=0.01). • The DCE-imaging derived quantitative parameter hepatocellular uptake rate (Ki) fails to discriminate pairwise intergroup differences of hepatic fibrosis (p>0.09). • DWI is preferable to DCE-imaging for discrimination of fibrosis stages F0/1 to F2/3 (p<0.001) and F4 (p<0.001).
Collapse
Affiliation(s)
- S Keller
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany. .,Department of Radiology, Charité, Charitéplatz 1, 10117, Berlin, Germany.
| | - J Sedlacik
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - T Schuler
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - R Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - M Avanesov
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| | - R Zenouzi
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - A W Lohse
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - H Kooijman
- Philips Medical Systems, MR Clinical Science, Hamburg, Germany
| | - J Fiehler
- Department of Neuroradiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - C Schramm
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - J Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistr. 52, 20246, Hamburg, Germany
| |
Collapse
|
19
|
Isolated Perfused Rat Livers to Quantify the Pharmacokinetics and Concentrations of Gd-BOPTA. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:3839108. [PMID: 30116162 PMCID: PMC6079620 DOI: 10.1155/2018/3839108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022]
Abstract
With recent advances in liver imaging, the estimation of liver concentrations is now possible following the injection of hepatobiliary contrast agents and radiotracers. However, how these images are generated remains partially unknown. Most experiments that would be helpful to increase this understanding cannot be performed in vivo. For these reasons, we investigated the liver distribution of the magnetic resonance (MR) contrast agent gadobenate dimeglumine (Gd-BOPTA, MultiHance®, Bracco Imaging) in isolated perfused rat livers (IPRLs). In IPRL, we developed a new set up that quantifies simultaneously the Gd-BOPTA compartment concentrations and the transfer rates between these compartments. Concentrations were measured either by MR signal intensity or by count rates when the contrast agent was labelled by [153Gd]. With this experimental model, we show how the Gd-BOPTA hepatocyte concentrations are modified by temperature and liver flow rates. We define new pharmacokinetic parameters to quantify the canalicular transport of Gd-BOPTA. Finally, we present how transfer rates generate Gd-BOPTA concentrations in rat liver compartments. These findings better explain how liver imaging with hepatobiliary radiotracers and contrast agents is generated and improve the image interpretation by clinicians.
Collapse
|
20
|
Pan S, Wang XQ, Guo QY. Quantitative assessment of hepatic fibrosis in chronic hepatitis B and C: T1 mapping on Gd-EOB-DTPA-enhanced liver magnetic resonance imaging. World J Gastroenterol 2018; 24:2024-2035. [PMID: 29760545 PMCID: PMC5949715 DOI: 10.3748/wjg.v24.i18.2024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/06/2018] [Accepted: 04/15/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the accuracy of Look-Locker on gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) for staging liver fibrosis in chronic hepatitis B/C (CHB/C).
METHODS We prospectively included 109 patients with CHB or CHC who underwent a 3.0-Tesla MRI examination, including T1-weighted and Look-Locker sequences for T1 mapping. Hepatocyte fractions (HeF) and relaxation time reduction rate (RE) were measured for staging liver fibrosis. A receiver operating characteristic analysis using the area under the receiver operating characteristic curve (AUC) was used to compare the diagnostic performance in predicting liver fibrosis between HeF and RE.
RESULTS A total of 73 patients had both pathological results and MRI information. The number of patients in each fibrosis stage was evaluated semiquantitatively according to the METAVIR scoring system: F0, n = 23 (31.5%); F1, n = 19 (26.0%); F2, n = 13 (17.8%); F3, n = 6 (8.2%), and F4, n = 12 (16.4%). HeF by EOB enhancement imaging was significantly correlated with fibrosis stage (r = -0.808, P < 0.05). AUC values for diagnosis of any (≥ F1), significant (≥ F2) or advanced (≥ F3) fibrosis, and cirrhosis (F4) using HeF were 0.837 (0.733-0.913), 0.890 (0.795-0.951), 0.957 (0.881-0.990), and 0.957 (0.882-0.991), respectively. HeF measurement was more accurate than use of RE in establishing liver fibrosis staging, suggesting that calculation of HeF is a superior noninvasive liver fibrosis staging method.
CONCLUSION A T1 mapping-based HeF method is an efficient diagnostic tool for the staging of liver fibrosis.
Collapse
Affiliation(s)
- Shen Pan
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiao-Qi Wang
- Department of Clinical Science, Philips Healthcare, Beijing 100600, China
| | - Qi-Yong Guo
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
21
|
Quantification of hepatic perfusion and hepatocyte function with dynamic gadoxetic acid-enhanced MRI in patients with chronic liver disease. Clin Sci (Lond) 2018; 132:813-824. [PMID: 29440620 DOI: 10.1042/cs20171131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 02/06/2023]
Abstract
The purpose of the present study was to develop and perform initial validation of dynamic MRI enhanced with gadoxetic acid as hepatobiliary contrast agent to quantify hepatic perfusion and hepatocyte function in patients with chronic liver disease. Free-breathing, dynamic gadoxetic acid-enhanced MRI was performed at 3.0 T using a 3D time-resolved angiography sequence with stochastic trajectories during 38 min. A dual-input three-compartment model was developed to derive hepatic perfusion and hepatocyte function parameters. Method feasibility was assessed in 23 patients with biopsy-proven chronic liver disease. Parameter analysis could be performed in 21 patients (91%). The hepatocyte function parameters were more discriminant than the perfusion parameters to differentiate between patients with minimal fibrosis (METAVIR F0-F1), intermediate fibrosis (F2-F3) and cirrhosis (F4). The areas under the receiver operating characteristic curves (ROCs) to diagnose significant fibrosis (METAVIR F ≥ 2) were: 0.95 (95% CI: 0.87-1; P<0.001) for biliary efflux, 0.88 (95% CI: 0.73-1; P<0.01) for sinusoidal backflux, 0.81 (95% CI: 0.61-1; P<0.05) for hepatocyte uptake fraction and 0.75 (95% CI: 0.54-1; P<0.05) for hepatic perfusion index (HPI), respectively. These initial results in patients with chronic liver diseases show that simultaneous quantification of hepatic perfusion and hepatocyte function is feasible with free breathing dynamic gadoxetic acid-enhanced MRI. Hepatocyte function parameters may be relevant to assess liver fibrosis severity.
Collapse
|
22
|
Yamada Y, Matsumoto S, Mori H, Takaji R, Kiyonaga M, Hijiya N, Tanoue R, Tomonari K, Tanoue S, Hongo N, Ohta M, Seike M, Inomata M, Murakami K, Moriyama M. Periportal lymphatic system on post-hepatobiliary phase Gd-EOB-DTPA-enhanced MR imaging in normal subjects and patients with chronic hepatitis C. Abdom Radiol (NY) 2017; 42:2410-2419. [PMID: 28444420 DOI: 10.1007/s00261-017-1155-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We sought to evaluate visualization of periportal lymphatics and lymph nodes (lymphatic system) on Gd-EOB-DTPA-enhanced magnetic resonance (MR) images using a fat-suppressed T2-weighted sequence with 3-dimensional (3D) volume isotropic turbo spin echo acquisition (VISTA) at 3.0 T in normal subjects and patients with chronic hepatitis C. METHODS MR imaging was performed in 254 subjects between June 2013 and May 2016. After applying inclusion and exclusion criteria, the final population was 31 normal subjects and 34 patients with chronic hepatitis C. Images were acquired after the hepatobiliary phase following intravenous administration of Gd-EOB-DTPA, which causes signal loss in the bile ducts, to facilitate the visualization of the periportal lymphatic system. Two radiologists assessed the visualization of the periportal lymphatic system in 31 normal subjects. The axial dimensions of the main periportal lymphatic system in normal subjects were measured and compared with those of 34 patients with chronic hepatitis C using the Mann-Whitney U-test, and their correlation with a hepatic fibrosis marker, the Fibrosis-4 (FIB-4), was assessed using Spearman's rank correlation test. RESULTS The periportal lymphatic system was detected as high signal intensity areas surrounding the portal vein up to the third branches by each reader in all normal subjects. The axial dimensions of the main periportal lymphatic system in patients with chronic hepatitis C were significantly larger than those in normal subjects (p < 0.0001), and showed a significantly positive correlation with the FIB-4 score (ρ = 0.73, p < 0.001). CONCLUSIONS Fat-suppressed T2-weighted MR imaging with 3D-VISTA acquired after the hepatobiliary phase on Gd-EOB-DTPA-enhanced imaging may be a useful noninvasive method for evaluating the periportal lymphatic system and the degree of hepatic fibrosis.
Collapse
Affiliation(s)
- Yasunari Yamada
- Department of Radiology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Shunro Matsumoto
- Department of Radiology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan.
| | - Hiromu Mori
- Department of Radiology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Ryo Takaji
- Department of Radiology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Maki Kiyonaga
- Department of Radiology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Rika Tanoue
- Oita Diagnostic Imaging Center, Beppu, Oita, 874-0023, Japan
| | | | - Shuichi Tanoue
- Department of Radiology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Norio Hongo
- Department of Radiology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Masayuki Ohta
- Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Masataka Seike
- Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Masafumi Inomata
- Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Kazunari Murakami
- Gastroenterology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, Oita, 879-5593, Japan
| |
Collapse
|