1
|
Jang J, Chung YE, Kim S, Hwang D. Fully automatic quantification of transient severe respiratory motion artifact of gadoxetate disodium-enhanced MRI during arterial phase. Med Phys 2022; 49:7247-7261. [PMID: 35754384 DOI: 10.1002/mp.15831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE It is important to fully automate the evaluation of gadoxetate disodium-enhanced arterial phase images because the efficient quantification of transient severe motion artifacts can be used in a variety of applications. Our study proposes a fully automatic evaluation method of motion artifacts during the arterial phase of gadoxetate disodium-enhanced MR imaging. METHODS The proposed method was based on the construction of quality-aware features to represent the motion artifact using MR image statistics and multidirectional filtered coefficients. Using the quality-aware features, the method calculated quantitative quality scores of gadoxetate disodium-enhanced images fully automatically. The performance of our proposed method, as well as two other methods, was acquired by correlating scores against subjective scores from radiologists based on the 5-point scale and binary evaluation. The subjective scores evaluated by two radiologists were severity scores of motion artifacts in the evaluation set on a scale of 1 (no motion artifacts) to 5 (severe motion artifacts). RESULTS Pearson's linear correlation coefficient (PLCC) and Spearman's rank-ordered correlation coefficient (SROCC) values of our proposed method against the subjective scores were 0.9036 and 0.9057, respectively, whereas the PLCC values of two other methods were 0.6525 and 0.8243, and the SROCC values were 0.6070 and 0.8348. Also, in terms of binary quantification of transient severe respiratory motion, the proposed method achieved 0.9310 sensitivity, 0.9048 specificity, and 0.9200 accuracy, whereas the other two methods achieved 0.7586, 0.8996 sensitivities, 0.8098, 0.8905 specificities, and 0.9200, 0.9048 accuracies CONCLUSIONS: This study demonstrated the high performance of the proposed automatic quantification method in evaluating transient severe motion artifacts in arterial phase images.
Collapse
Affiliation(s)
- Jinseong Jang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sungwon Kim
- Department of Radiology, Yonsei University College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Dosik Hwang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.,Department of Radiology and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea.,Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
2
|
A low albumin level as a risk factor for transient severe motion artifact induced by gadoxetate disodium administration: A retrospective observational study with free-breathing dynamic MRI and an experimental study in rats. PLoS One 2022; 17:e0265588. [PMID: 35303023 PMCID: PMC8932582 DOI: 10.1371/journal.pone.0265588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Objectives In the arterial phase of gadoxetate disodium administration for dynamic MRI, transient severe motion (TSM) sometimes occurs, making image evaluation difficult. This study was to identify risk factors for TSM in a clinical study, and confirm them and investigate the cause in an animal study. Methods A retrospective, single-center, observational study included patients who underwent dynamic MRI using gadoxetate disodium for the first time from April 2016 to September 2019 and free-breathing MRI was performed. Differences in clinical characteristics and laboratory tests between the presence and absence of TSM were examined. Animal experiments were conducted in 50 rats; gadoxetate disodium was injected into three sites (distal inferior vena cava (IVC), ascending aorta, and descending aorta) to identify the organ which triggers respiratory irregularities. Phosphate-buffered saline and gadopentetate dimeglumine were also injected into the distal IVC. In addition, to evaluate the effect of albumin, gadoxetate disodium was diluted with phosphate-buffered saline or 5% human serum albumin and injected into the ascending aorta. The time course of the respiratory rate was monitored and evaluated. Results 20 of 51 (39.2%) patients showed TSM. On multivariable analysis, a low albumin level was an independent risk factor (P = .035). Gadoxetate disodium administration caused significant tachypnea compared to gadopentetate dimeglumine or PBS (an elevation of 16.6 vs 3.0 or 4.3 breaths/min; both P < .001) in rats. The starting time of tachypnea was earlier with injection into the ascending aorta than into the descending aorta (10.3 vs 17.9 sec; P < .001) and the distal IVC (vs 15.6 sec; P < .001). With dilution with albumin instead of phosphate-buffered saline, tachypnea was delayed and suppressed (9.9 vs 13.0 sec; P < .001, 24.1 vs 17.0 breaths/min; P = .031). Conclusions A low albumin level is a risk factor for TSM, which could be caused by the effect of gadoxetate disodium on the head and neck region.
Collapse
|
3
|
Glessgen CG, Breit HC, Block TK, Merkle EM, Heye T, Boll DT. Respiratory anomalies associated with gadoxetate disodium and gadoterate meglumine: compressed sensing MRI revealing physiologic phenomena during the entire injection cycle. Eur Radiol 2021; 32:346-354. [PMID: 34324024 PMCID: PMC8660712 DOI: 10.1007/s00330-021-08114-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The goal of this study was to investigate the precise timeline of respiratory events occurring after the administration of two gadolinium-based contrast agents, gadoxetate disodium and gadoterate meglumine. MATERIALS AND METHODS This retrospective study examined 497 patients subject to hepatobiliary imaging using the GRASP MRI technique (TR/TE = 4/2 ms; ST = 2.5 mm; 384 × 384 mm). Imaging was performed after administration of gadoxetate (N = 338) and gadoterate (N = 159). All GRASP datasets were reconstructed using a temporal resolution of 1 s. Four regions-of-interest (ROIs) were placed in the liver dome, the right and left cardiac ventricle, and abdominal aorta detecting liver displacement and increasing vascular signal intensities over time. Changes in hepatic intensity reflected respiratory dynamics in temporal correlation to the vascular contrast bolus. RESULTS In total, 216 (67%) and 41 (28%) patients presented with transient respiratory motion after administration of gadoxetate and gadoterate, respectively. The mean duration from start to acme of the respiratory episode was similar (p = 0.4) between gadoxetate (6.0 s) and gadoterate (5.6 s). Its mean onset in reference to contrast arrival in the right ventricle differed significantly (p < 0.001) between gadoxetate (15.3s) and gadoterate (1.8 s), analogously to peak inspiration timepoint in reference to the aortic enhancement arrival (gadoxetate: 0.9s after, gadoterate: 11.2 s before aortic enhancement, p < 0.001). CONCLUSIONS The timepoint of occurrence of transient respiratory anomalies associated with gadoxetate disodium and gadoterate meglumine differs significantly between both contrast agents while the duration of the event remains similar. KEY POINTS • Transient respiratory anomalies following the administration of gadoterate meglumine occurred during a time period usually not acquired in MR imaging. • Transient respiratory anomalies following the administration of gadoxetate disodium occurred around the initiation of arterial phase imaging. • The estimated duration of respiratory events was similar between both contrast agents.
Collapse
Affiliation(s)
| | | | - Tobias Kai Block
- Center for Advanced Imaging Innovation and Research, Department of Radiology, New York University Grossman School of Medicine, New York, USA
| | - Elmar Max Merkle
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Tobias Heye
- Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
4
|
Tanabe M, Higashi M, Iida E, Onoda H, Ihara K, Ariyoshi S, Kameda F, Miyoshi K, Furukawa M, Okada M, Ito K. Transient respiratory motion artifacts in multiple arterial phases on abdominal dynamic magnetic resonance imaging: a comparison using gadoxetate disodium and gadobutrol. Jpn J Radiol 2020; 39:178-185. [PMID: 32959222 DOI: 10.1007/s11604-020-01042-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To compare the occurrence of transient respiratory motion artifacts (TRMAs) in multiple arterial phases on abdominal magnetic resonance (MR) images between those obtained using gadobutrol and gadoxetate disodium. MATERIALS AND METHODS Two hundred and fourteen abdominal MR examinations (101 with gadoxetate disodium, 113 with gadobutrol) were evaluated. Dynamic three-dimensional contrast-enhanced T1-weighted imaging (CAIPIRINHA-Dixon-TWIST-VIBE) including single-breath-hold six arterial phase acquisitions was performed on a 3.0-T MRI scanner. The TRMAs frequency and the mean TRMA scores were compared between patients assessed with gadoxetate disodium and those assessed with gadobutrol. In addition, the timing of TRMAs appearing for the first time was also recorded and compared between the two groups. RESULTS The mean TRMA scores in all arterial phases using gadoxetate disodium were significantly worse than in those using gadobutrol (1.49 ± 0.78 vs. 1.18 ± 0.53, P < .001). Regarding the timing of the occurrence of TRMAs, the severe TRMAs frequency after the third arterial phase was significantly higher in patients using gadoxetate disodium (10/101, 10%) than in those using gadobutrol (0/113, 0%) (P < .001). CONCLUSION In multiple-arterial-phase dynamic MRI, the TRMAs frequency when using gadoxetate disodium increased compared with gadobutrol, due to intolerable respiratory suspension after the third arterial phase.
Collapse
Affiliation(s)
- Masahiro Tanabe
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Mayumi Higashi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Etsushi Iida
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hideko Onoda
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Ihara
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoko Ariyoshi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumi Kameda
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Keisuke Miyoshi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Matakazu Furukawa
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Munemasa Okada
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Katsuyoshi Ito
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
5
|
Wei Y, Chen G, Tang H, Yuan Y, Huang Z, He X, Ye Z, Zhang T, Wei X, Song B. Improved Display of Hepatic Arterial Anatomy Using Differential Subsampling With Cartesian Ordering (DISCO) With Gadoxetic Acid-Enhanced MRI: Comparison With Single Arterial Phase MRI and Computed Tomographic Angiography. J Magn Reson Imaging 2020; 51:1766-1776. [PMID: 31837079 DOI: 10.1002/jmri.27020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/24/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In clinical practice arterial anatomy evaluation is often determined using computed tomographic angiography (CTA); the effect of enhanced MRI has been neglected. PURPOSE To evaluate whether multiple arterial phase (MAP) images from patients who underwent differential subsampling with Cartesian ordering (DISCO) acquisition would improve the hepatic arterial display compared with single arterial phase (SAP) and CTA. STUDY TYPE A prospective, randomized trial. SUBJECTS In all, 130 patients (mean age, 55.81 ± 9.43 years; range, 35-78 years) including 89 men and 41 women. FIELD STRENGTH/SEQUENCE 3.0T, DISCO, liver acquisition with volume acceleration-flexible (LAVA-Flex), CTA. ASSESSMENT A simple randomization was conducted and the study was subdivided into study part I (DISCO vs. SAP) and study part II (DISCO vs. CTA). Ten hepatic arterial segments were independently evaluated by three readers in the axial plane and the quality of hepatic arterial display was assessed using a four-point scale. STATISTICAL TESTS Kendall's W-test, χ2 test, Mann-Whitney U-test, and Kruskal-Wallis one-way analysis of variance (ANOVA) test. RESULTS Excellent interobserver agreement was obtained for hepatic arterial display (all Kendall's W values >0.80). For study part I, the mean arterial display scores for the common hepatic artery (CHA), proper hepatic artery (PHA), left hepatic artery (LHA), right hepatic artery (RHA), left gastric artery (LGA), and gastroduodenal artery (GDA) obtained with DISCO were higher than that obtained with SAP imaging (all P < 0.01). For study part II, comparable image quality for CHA (P = 0.798), PHA (P = 0.440), LHA (P = 0.211), RHA (P = 0.775) LGA (P = 0.468), and GDA (P = 0.801) was obtained with DISCO and CTA. DATA CONCLUSION The use of MAP acquisition with DISCO is superior to the use of SAP in hepatic arterial display and compares favorably with CTA; in the future, DISCO possibly can replace the latter ionization-related method to provide a more comprehensive evaluation of the liver arterial vessels. LEVEL OF EVIDENCE 1 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2020;51:1766-1776.
Collapse
Affiliation(s)
- Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Guoyong Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hehan Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaopeng He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Ye
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Glessgen CG, Moor M, Stieltjes B, Winkel DJ, Block TK, Merkle EM, Heye TJ, Boll DT. Gadoxetate Disodium versus Gadoterate Meglumine: Quantitative Respiratory and Hemodynamic Metrics by Using Compressed-Sensing MRI. Radiology 2019; 293:317-326. [DOI: 10.1148/radiol.2019190187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carl G. Glessgen
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Manuela Moor
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Bram Stieltjes
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - David J. Winkel
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Tobias K. Block
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Elmar M. Merkle
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Tobias J. Heye
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Daniel T. Boll
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| |
Collapse
|
7
|
Kromrey ML, Hori M, Goshima S, Kozaka K, Hyodo T, Nakamura Y, Nishie A, Tamada T, Shimizu T, Kanki A, Motosugi U. Gadoxetate disodium-related event during image acquisition: a prospective multi-institutional study for better MR practice. Eur Radiol 2019; 30:281-290. [DOI: 10.1007/s00330-019-06358-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
|