1
|
Qiu C, Glaser KJ, Owusu N, Li J, Wu H, Venkatesh SK, Manduca A, Ehman RL, Yin M. Acquisition Efficiency and Technical Repeatability of Dual-Frequency 3D Vector MR Elastography of the Liver. J Magn Reson Imaging 2025; 61:1416-1425. [PMID: 38935749 PMCID: PMC11671616 DOI: 10.1002/jmri.29493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND MR elastography (MRE) at 60 Hz is widely used for staging liver fibrosis. MRE with lower frequencies may provide inflammation biomarkers. PURPOSE To establish a practical simultaneous dual-frequency liver MRE protocol at both 30 Hz and 60 Hz during a single examination and validate the occurrence of second harmonic waves at 30 Hz. STUDY TYPE Retrospective. SUBJECTS One hundred six patients (48 females, age: 50.0 ± 13.4 years) were divided as follows: Cohort One (15 patients with chronic liver disease [CLD] and 25 healthy volunteers) with simultaneous dual-frequency MRE. Cohort Two (66 patients with CLD) with second harmonic MRE. FIELD STRENGTH/SEQUENCE 3-T, single- or dual-frequency MRE at 30 Hz and 60 Hz. ASSESSMENT Liver stiffness (LS) in both cohorts was evaluated with manually placed volumetric ROIs by two independent analyzers. Image quality was assessed by three independent readers on a 4-point scale (0-3: none/failed, fair, moderate, excellent) based on the depth of wave propagation with 1/3 incremental penetration. The success rate was derived from the percentage of nonzero quality scores. STATISTICAL TESTS Measurement agreement, bias, and repeatability of LS were assessed using intraclass correlation coefficients (ICCs), Bland-Altman plots, and repeatability coefficient (RC). Mann-Whitney U tests were used to evaluate the differences in image quality between different methods. A P-value <0.05 was considered statistically significant. RESULTS Success rate was 97.5% in Cohort One and 91% success rate for the second harmonic MRE in Cohort Two. The second harmonic and conventional MRE showed excellent agreement in LS (all ICCs >0.90). The quality scores for the second harmonic wave images were lower than those from the conventional MRE (Z = -4.523). DATA CONCLUSION Compared with conventional and second harmonic methods, simultaneous dual-frequency had better image quality, high success rate and the advantage of intrinsic co-registration, while the second harmonic method can be an alternative if custom waveform is not available. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Caixin Qiu
- Department of RadiologyTianjin First Central HospitalTianjinChina
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | - Nana Owusu
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Jiahui Li
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | - Hao Wu
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | | | | | - Meng Yin
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
2
|
Bayerl C, Safraou Y, Reiter R, Proß V, Lehmann K, Kühl AA, Shahryari M, Hamm B, Sack I, Makowski MR, Braun J, Asbach P. Investigation of hepatic inflammation via viscoelasticity at low and high mechanical frequencies - A magnetic resonance elastography study. J Mech Behav Biomed Mater 2024; 160:106711. [PMID: 39244991 DOI: 10.1016/j.jmbbm.2024.106711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE To study the potential of viscoelastic parameters such as liver stiffness, loss tangent (marker of viscous properties) and viscoelastic dispersion to detect hepatic inflammation by in-vivo and ex-vivo MR elastography (MRE) at low and high vibration frequencies. METHODS 15 patients scheduled for liver tumor resection surgery were prospectively enrolled in this IRB-approved study and underwent multifrequency in-vivo MRE (30-60Hz) at 1.5-T prior to surgery. Immediately after liver resection, tumor-free tissue specimens were examined with ex-vivo MRE (0.8-2.8 kHz) at 0.5-T and histopathologic analysis including NAFLD activity score (NAS) and inflammation score (I-score) as sum of histological sub-features of inflammation. RESULTS In-vivo, in regions where tissue samples were obtained, the loss tangent correlated with the I-score (R = 0.728; p = 0.002) and c-dispersion (stiffness dispersion over frequency) correlated with lobular inflammation (R = -0.559; p = 0.030). In a subgroup of patients without prior chemotherapy, c-dispersion correlated with I-score also in the whole liver (R = -0.682; p = 0.043). ROC analysis of the loss tangent for predicting the I-score showed a high AUC for I ≥ 1 (0.944; p = 0.021), I ≥ 2 (0.804; p = 0.049) and I ≥ 3 (0.944; p = 0.021). Ex-vivo MRE was not sensitive to inflammation, whereas strong correlations were observed between fibrosis and stiffness (R = 0.589; p = 0.021), penetration rate (R = 0.589; p = 0.021), loss tangent (R = -0.629; p = 0.012), and viscoelastic model parameters (spring-pot powerlaw exponent, R = -0.528; p = 0.043; spring-pot shear modulus, R = 0.589; p = 0.021). CONCLUSION Our results suggest that c-dispersion of the liver is sensitive to inflammation when measured in-vivo in the low dynamic range (30-60Hz), while at higher frequencies (0.8-2.8 kHz) viscoelastic parameters are dominated by fibrosis.
Collapse
Affiliation(s)
- Christian Bayerl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Yasmine Safraou
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Rolf Reiter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Vanessa Proß
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Kai Lehmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Surgery, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, iPATH.Berlin Core Unit, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Mehrgan Shahryari
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Bernd Hamm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Ingolf Sack
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Marcus R Makowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany; Technical University of Munich (TUM), Germany; School of Medicine & Klinikum Rechts der Isar, Department of Diagnostic and Interventional Radiology, Germany
| | - Jürgen Braun
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Patrick Asbach
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Radiology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
3
|
Yin M. Shear-Wave Dispersion for Detecting Hepatic Inflammation in Metabolic Dysfunction-associated Steatotic Liver Disease. Radiology 2024; 312:e241420. [PMID: 39162631 PMCID: PMC11366665 DOI: 10.1148/radiol.241420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Affiliation(s)
- Meng Yin
- From the Department of Radiology, Center for Advanced Imaging Research, Opus Building, Mayo Clinic, 200 First St SW, Rochester, MN 55905
| |
Collapse
|
4
|
Moura Cunha G, Fan B, Navin PJ, Olivié D, Venkatesh SK, Ehman RL, Sirlin CB, Tang A. Interpretation, Reporting, and Clinical Applications of Liver MR Elastography. Radiology 2024; 310:e231220. [PMID: 38470236 PMCID: PMC10982829 DOI: 10.1148/radiol.231220] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 03/13/2024]
Abstract
Chronic liver disease is highly prevalent and often leads to fibrosis or cirrhosis and complications such as liver failure and hepatocellular carcinoma. The diagnosis and staging of liver fibrosis is crucial to determine management and mitigate complications. Liver biopsy for histologic assessment has limitations such as sampling bias and high interreader variability that reduce precision, which is particularly challenging in longitudinal monitoring. MR elastography (MRE) is considered the most accurate noninvasive technique for diagnosing and staging liver fibrosis. In MRE, low-frequency vibrations are applied to the abdomen, and the propagation of shear waves through the liver is analyzed to measure liver stiffness, a biomarker for the detection and staging of liver fibrosis. As MRE has become more widely used in clinical care and research, different contexts of use have emerged. This review focuses on the latest developments in the use of MRE for the assessment of liver fibrosis; provides guidance for image acquisition and interpretation; summarizes diagnostic performance, along with thresholds for diagnosis and staging of liver fibrosis; discusses current and emerging clinical applications; and describes the latest technical developments.
Collapse
Affiliation(s)
- Guilherme Moura Cunha
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Boyan Fan
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Patrick J. Navin
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Damien Olivié
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Sudhakar K. Venkatesh
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Richard L. Ehman
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - Claude B. Sirlin
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| | - An Tang
- From the Department of Radiology, University of Washington, Seattle,
Wash (G.M.C.); Department of Radiology, Université Laval, Québec,
Québec, Canada (B.F.); Department of Radiology, Mayo Clinic, Rochester,
Minn (P.J.N., S.K.V., R.L.E.); Department of Radiology, Centre Hospitalier de
l'Université de Montréal, 1058 Rue Saint-Denis,
Montréal, QC, Canada H2X 3J4 (D.O., A.T.); and Department of Radiology,
University of California San Diego, San Diego, Calif (C.B.S.)
| |
Collapse
|
5
|
Tsujita Y, Sofue K, Ueshima E, Ueno Y, Hori M, Murakami T. Clinical Application of Quantitative MR Imaging in Nonalcoholic Fatty Liver Disease. Magn Reson Med Sci 2023; 22:435-445. [PMID: 35584952 PMCID: PMC10552668 DOI: 10.2463/mrms.rev.2021-0152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Viral hepatitis was previously the most common cause of chronic liver disease. However, in recent years, nonalcoholic fatty liver disease (NAFLD) cases have been increasing, especially in developed countries. NAFLD is histologically characterized by fat, fibrosis, and inflammation in the liver, eventually leading to cirrhosis and hepatocellular carcinoma. Although biopsy is the gold standard for the assessment of the liver parenchyma, quantitative evaluation methods, such as ultrasound, CT, and MRI, have been reported to have good diagnostic performances. The quantification of liver fat, fibrosis, and inflammation is expected to be clinically useful in terms of the prognosis, early intervention, and treatment response for the management of NAFLD. The aim of this review was to discuss the basics and prospects of MRI-based tissue quantifications of the liver, mainly focusing on proton density fat fraction for the quantification of fat deposition, MR elastography for the quantification of fibrosis, and multifrequency MR elastography for the evaluation of inflammation.
Collapse
Affiliation(s)
- Yushi Tsujita
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Keitaro Sofue
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Eisuke Ueshima
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshiko Ueno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masatoshi Hori
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takamichi Murakami
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
6
|
Bresnahan R, Duarte R, Mahon J, Beale S, Chaplin M, Bhattacharyya D, Houten R, Edwards K, Nevitt S, Maden M, Boland A. Diagnostic accuracy and clinical impact of MRI-based technologies for patients with non-alcoholic fatty liver disease: systematic review and economic evaluation. Health Technol Assess 2023; 27:1-115. [PMID: 37839810 PMCID: PMC10591209 DOI: 10.3310/kgju3398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Background Magnetic resonance imaging-based technologies are non-invasive diagnostic tests that can be used to assess non-alcoholic fatty liver disease. Objectives The study objectives were to assess the diagnostic test accuracy, clinical impact and cost-effectiveness of two magnetic resonance imaging-based technologies (LiverMultiScan and magnetic resonance elastography) for patients with non-alcoholic fatty liver disease for whom advanced fibrosis or cirrhosis had not been diagnosed and who had indeterminate results from fibrosis testing, or for whom transient elastography or acoustic radiation force impulse was unsuitable, or who had discordant results from fibrosis testing. Data sources The data sources searched were MEDLINE, MEDLINE Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Embase, Cochrane Database of Systematic Reviews, Cochrane Central Database of Controlled Trials, Database of Abstracts of Reviews of Effects and the Health Technology Assessment. Methods A systematic review was conducted using established methods. Diagnostic test accuracy estimates were calculated using bivariate models and a summary receiver operating characteristic curve was calculated using a hierarchical model. A simple decision-tree model was developed to generate cost-effectiveness results. Results The diagnostic test accuracy review (13 studies) and the clinical impact review (11 studies) only included one study that provided evidence for patients who had indeterminate or discordant results from fibrosis testing. No studies of patients for whom transient elastography or acoustic radiation force impulse were unsuitable were identified. Depending on fibrosis level, relevant published LiverMultiScan diagnostic test accuracy results ranged from 50% to 88% (sensitivity) and from 42% to 75% (specificity). No magnetic resonance elastography diagnostic test accuracy data were available for the specific population of interest. Results from the clinical impact review suggested that acceptability of LiverMultiScan was generally positive. To explore how the decision to proceed to biopsy is influenced by magnetic resonance imaging-based technologies, the External Assessment Group presented cost-effectiveness analyses for LiverMultiScan plus biopsy versus biopsy only. Base-case incremental cost-effectiveness ratio per quality-adjusted life year gained results for seven of the eight diagnostic test strategies considered showed that LiverMultiScan plus biopsy was dominated by biopsy only; for the remaining strategy (Brunt grade ≥2), the incremental cost-effectiveness ratio per quality-adjusted life year gained was £1,266,511. Results from threshold and scenario analyses demonstrated that External Assessment Group base-case results were robust to plausible variations in the magnitude of key parameters. Limitations Diagnostic test accuracy, clinical impact and cost-effectiveness data for magnetic resonance imaging-based technologies for the population that is the focus of this assessment were limited. Conclusions Magnetic resonance imaging-based technologies may be useful to identify patients who may benefit from additional testing in the form of liver biopsy and those for whom this additional testing may not be necessary. However, there is a paucity of diagnostic test accuracy and clinical impact data for patients who have indeterminate results from fibrosis testing, for whom transient elastography or acoustic radiation force impulse are unsuitable or who had discordant results from fibrosis testing. Given the External Assessment Group cost-effectiveness analyses assumptions, the use of LiverMultiScan and magnetic resonance elastography for assessing non-alcoholic fatty liver disease for patients with inconclusive results from previous fibrosis testing is unlikely to be a cost-effective use of National Health Service resources compared with liver biopsy only. Study registration This study is registered as PROSPERO CRD42021286891. Funding Funding for this study was provided by the Evidence Synthesis Programme of the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 27, No. 10. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Rebecca Bresnahan
- LRiG, Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Rui Duarte
- LRiG, Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - James Mahon
- Coldingham Analytical Services, Berwickshire, UK
| | | | - Marty Chaplin
- LRiG, Department of Health Data Science, University of Liverpool, Liverpool, UK
| | | | - Rachel Houten
- LRiG, Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Katherine Edwards
- LRiG, Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Sarah Nevitt
- LRiG, Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Michelle Maden
- LRiG, Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Angela Boland
- LRiG, Department of Health Data Science, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Runge JH. Editorial for “Dual‐Frequency MR Elastography to Differentiate Between Inflammation and Fibrosis of the Liver: Comparison With Histopathology”. J Magn Reson Imaging 2020; 51:1594-1595. [DOI: 10.1002/jmri.26967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jurgen Henk Runge
- Department of Radiology and Nuclear MedicineAmsterdam UMC, location AMC Amsterdam Netherlands
- King's College London, School of Biomedical Engineering & Imaging Sciences London UK
| |
Collapse
|
8
|
Ito D, Numano T, Ueki T, Habe T, Maeno T, Takamoto K, Igarashi K, Maharjan S, Mizuhara K, Nishijo H. Magnetic resonance elastography of the supraspinatus muscle: A preliminary study on test-retest repeatability and wave quality with different frequencies and image filtering. Magn Reson Imaging 2020; 71:27-36. [PMID: 32325234 DOI: 10.1016/j.mri.2020.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to determine an optimal condition (vibration frequency and image filtering) for stiffness estimation with high accuracy and stiffness measurement with high repeatability in magnetic resonance elastography (MRE) of the supraspinatus muscle. Nine healthy volunteers underwent two MRE exams separated by at least a 30 min break, on the same day. MRE acquisitions were performed with a gradient-echo type multi-echo MR sequence at 75, 100, and 125 Hz pneumatic vibration. Wave images were processed by a bandpass filter or filter combining bandpass and directional filters (bandpass-directional filter). An observer specified the region of interest (ROI) on clear wave propagation in the supraspinatus muscle, within which the observer measured the stiffness. This study assessed wave image quality according to two indices, as a substitute for the assessment of the accuracy of the stiffness estimation. One is the size of the clear wave propagation area (ROI size used to measure the stiffness) and the other is the qualitative stiffness resolution score in that area. These measurements made by the observer were repeated twice at least one month apart after each MRE exam. This study assessed the intra-examiner and observer repeatability of the stiffness value, ROI size and resolution score in each combination of vibration frequency and image filter. Repeatability of the data was analyzed using the intraclass correlation coefficient (ICC) and 95% limits-of-agreement (LOA) in Bland-Altman analysis. The analyses on intra-examiner and observer repeatability of stiffness indicated that the ICC and 95% LOA were not varied greatly depending on vibration frequency and image filter (intra-examiner repeatability, ICC range, 0.79 to 0.88; 95% LOA range, ±23.95 to ±32.42%, intra-observer repeatability, ICC range, 0.98 to 1.00; 95% LOA range, ±5.10 to ±10.99%). In the analyses on intra-examiner repeatability of ROI size, ICCs were rather low (ranging from: 0.03 to 0.69) while 95% LOA was large in all the combinations of vibration frequency and image filter (ranging from: ±62.66 to ±83.33%). In the analyses on intra-observer repeatability of ROI size, ICCs were sufficiently high in the total combination of vibration frequency and image filter (ranging from 0.80 to 0.87) while the 95% LOAs were better (lower) in the bandpass-directional filter than the bandpass filter (bandpass directional filter vs. bandpass filter, ±28.81 vs. ±54.83% at 75 Hz; ±25.63 vs. ±37.83% at 100 Hz; ±34.51 vs. ±43.36% at 125 Hz). In the analyses on intra-examiner and observer repeatability of resolution score, the mean difference (bias) between the two exams (or observations) was significantly low and there was almost no difference across all the combinations of vibration frequency and image filter (range of bias: -0.11-0.11 and -0.17-0.00, respectively). Additionally, effects of vibration frequency and image filter on wave image quality (ROI size and resolution score) were assessed separately in each exam. Both mean ROI size and resolution score in the bandpass-directional filter were larger than those in the bandpass filter. Among the data in the bandpass-directional filter, mean ROI size was larger at 75 and 100 Hz, and mean resolution score was larger at 100 and 125 Hz. Taking into consideration with the results of repeatability and wave image quality, the present results suggest that optimal vibration frequency and image filter for MRE of the supraspinatus muscles is 100 Hz and bandpass-directional filter, respectively.
Collapse
Affiliation(s)
- Daiki Ito
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Office of Radiation Technology, Keio University Hospital, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| | - Tomokazu Numano
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan.
| | - Takamichi Ueki
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Tetsushi Habe
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Office of Radiation Technology, Keio University Hospital, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshiki Maeno
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Kouichi Takamoto
- Department of Sport and Health Sciences, Faculty of Human Sciences, University of East Asia, 2-1, Ichinomiyagakuen-cho, Shimonoseki-shi, Yamaguchi 751-8503, Japan; System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan
| | - Keisuke Igarashi
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Surendra Maharjan
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan
| | - Kazuyuki Mizuhara
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan; Department of Mechanical Engineering, Tokyo Denki University, 5, Senju Asahicho, Adachi-ku, Tokyo 120-8551, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|