1
|
Elbehairy AF, Marshall H, Naish JH, Wild JM, Parraga G, Horsley A, Vestbo J. Advances in COPD imaging using CT and MRI: linkage with lung physiology and clinical outcomes. Eur Respir J 2024; 63:2301010. [PMID: 38548292 DOI: 10.1183/13993003.01010-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Recent years have witnessed major advances in lung imaging in patients with COPD. These include significant refinements in images obtained by computed tomography (CT) scans together with the introduction of new techniques and software that aim for obtaining the best image whilst using the lowest possible radiation dose. Magnetic resonance imaging (MRI) has also emerged as a useful radiation-free tool in assessing structural and more importantly functional derangements in patients with well-established COPD and smokers without COPD, even before the existence of overt changes in resting physiological lung function tests. Together, CT and MRI now allow objective quantification and assessment of structural changes within the airways, lung parenchyma and pulmonary vessels. Furthermore, CT and MRI can now provide objective assessments of regional lung ventilation and perfusion, and multinuclear MRI provides further insight into gas exchange; this can help in structured decisions regarding treatment plans. These advances in chest imaging techniques have brought new insights into our understanding of disease pathophysiology and characterising different disease phenotypes. The present review discusses, in detail, the advances in lung imaging in patients with COPD and how structural and functional imaging are linked with common resting physiological tests and important clinical outcomes.
Collapse
Affiliation(s)
- Amany F Elbehairy
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Marshall
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- MCMR, Manchester University NHS Foundation Trust, Manchester, UK
- Bioxydyn Limited, Manchester, UK
| | - Jim M Wild
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| | - Grace Parraga
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Division of Respirology, Western University, London, ON, Canada
| | - Alexander Horsley
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
2
|
Kim M, Naish JH, Needleman SH, Tibiletti M, Taylor Y, O'Connor JPB, Parker GJM. Feasibility of dynamic T 2 *-based oxygen-enhanced lung MRI at 3T. Magn Reson Med 2024; 91:972-986. [PMID: 38013206 PMCID: PMC10952203 DOI: 10.1002/mrm.29914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE To demonstrate proof-of-concept of a T2 *-sensitized oxygen-enhanced MRI (OE-MRI) method at 3T by assessing signal characteristics, repeatability, and reproducibility of dynamic lung OE-MRI metrics in healthy volunteers. METHODS We performed sequence-specific simulations for protocol optimisation and acquired free-breathing OE-MRI data from 16 healthy subjects using a dual-echo RF-spoiled gradient echo approach at 3T across two institutions. Non-linear registration and tissue density correction were applied. Derived metrics included percent signal enhancement (PSE), ∆R2 * and wash-in time normalized for breathing rate (τ-nBR). Inter-scanner reproducibility and intra-scanner repeatability were evaluated using intra-class correlation coefficient (ICC), repeatability coefficient, reproducibility coefficient, and Bland-Altman analysis. RESULTS Simulations and experimental data show negative contrast upon oxygen inhalation, due to substantial dominance of ∆R2 * at TE > 0.2 ms. Density correction improved signal fluctuations. Density-corrected mean PSE values, aligned with simulations, display TE-dependence, and an anterior-to-posterior PSE reduction trend at TE1 . ∆R2 * maps exhibit spatial heterogeneity in oxygen delivery, featuring anterior-to-posterior R2 * increase. Mean T2 * values across 32 scans were 0.68 and 0.62 ms for pre- and post-O2 inhalation, respectively. Excellent or good agreement emerged from all intra-, inter-scanner and inter-rater variability tests for PSE and ∆R2 *. However, ICC values for τ-nBR demonstrated limited agreement between repeated measures. CONCLUSION Our results demonstrate the feasibility of a T2 *-weighted method utilizing a dual-echo RF-spoiled gradient echo approach, simultaneously capturing PSE, ∆R2 * changes, and oxygen wash-in during free-breathing. The excellent or good repeatability and reproducibility on intra- and inter-scanner PSE and ∆R2 * suggest potential utility in multi-center clinical applications.
Collapse
Affiliation(s)
- Mina Kim
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC)University College LondonLondonUK
| | - Josephine H. Naish
- Bioxydyn LimitedManchesterUK
- BHF Manchester Centre for Heart and Lung Magnetic Resonance Research (MCMR)Manchester University NHS Foundation TrustManchesterUK
| | - Sarah H. Needleman
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC)University College LondonLondonUK
| | | | - Yohn Taylor
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC)University College LondonLondonUK
| | - James P. B. O'Connor
- Division of Cancer SciencesUniversity of ManchesterManchesterUK
- Division of Radiotherapy and ImagingInstitute of Cancer ResearchLondonUK
| | - Geoff J. M. Parker
- Department of Medical Physics and Biomedical Engineering, Centre for Medical Image Computing (CMIC)University College LondonLondonUK
- Bioxydyn LimitedManchesterUK
| |
Collapse
|
3
|
Needleman SH, Kim M, McClelland JR, Naish JH, Tibiletti M, O'Connor JPB, Parker GJM. Independent component analysis (ICA) applied to dynamic oxygen-enhanced MRI (OE-MRI) for robust functional lung imaging at 3 T. Magn Reson Med 2024; 91:955-971. [PMID: 37984456 PMCID: PMC10952250 DOI: 10.1002/mrm.29912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/03/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
PURPOSE Dynamic lung oxygen-enhanced MRI (OE-MRI) is challenging due to the presence of confounding signals and poor signal-to-noise ratio, particularly at 3 T. We have created a robust pipeline utilizing independent component analysis (ICA) to automatically extract the oxygen-induced signal change from confounding factors to improve the accuracy and sensitivity of lung OE-MRI. METHODS Dynamic OE-MRI was performed on healthy participants using a dual-echo multi-slice spoiled gradient echo sequence at 3 T and cyclical gas delivery. ICA was applied to each echo within a thoracic mask. The ICA component relating to the oxygen-enhancement signal was automatically identified using correlation analysis. The oxygen-enhancement component was reconstructed, and the percentage signal enhancement (PSE) was calculated. The lung PSE of current smokers was compared with nonsmokers; scan-rescan repeatability, ICA pipeline repeatability, and reproducibility between two vendors were assessed. RESULTS ICA successfully extracted a consistent oxygen-enhancement component for all participants. Lung tissue and oxygenated blood displayed the opposite oxygen-induced signal enhancements. A significant difference in PSE was observed between the lungs of current smokers and nonsmokers. The scan-rescan repeatability and the ICA pipeline repeatability were good. CONCLUSION The developed pipeline demonstrated sensitivity to the signal enhancements of the lung tissue and oxygenated blood at 3 T. The difference in lung PSE between current smokers and nonsmokers indicates a likely sensitivity to lung function alterations that may be seen in mild pathology, supporting future use of our methods in patient studies.
Collapse
Affiliation(s)
- Sarah H. Needleman
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Mina Kim
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Jamie R. McClelland
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Josephine H. Naish
- Bioxydyn LimitedManchesterUK
- BHF Manchester Centre for Heart and Lung Magnetic Resonance Research (MCMR), Manchester University NHS Foundation TrustManchesterUK
| | | | | | - Geoff J. M. Parker
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
- Bioxydyn LimitedManchesterUK
| |
Collapse
|
4
|
Pu Y, Zhou X, Zhang D, Guan Y, Xia Y, Liu S, Fan L. Quantitative Assessment Characteristics of Small Pulmonary Vessel Remodelling in Populations at High Risk for COPD and Smokers Using Low-Dose CT. Int J Chron Obstruct Pulmon Dis 2024; 19:51-62. [PMID: 38205400 PMCID: PMC10778209 DOI: 10.2147/copd.s436242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Purpose To explore the morphological alterations in small pulmonary vessels in populations at high risk for chronic obstructive pulmonary disease (COPD) and smokers based on multiple computed tomography (CT) quantitative parameters. Patients and Methods A total of 1969 Three Major Chest Diseases Screening Study participants with available demographic data and smoking history who underwent low-dose chest CT from 2018 to 2020 were included. All subjects were divided into normal, high risk for COPD, and COPD groups according to their pulmonary function test (PFT) results. Furthermore, the three groups were further subdivided into never-smokers, current smokers, and former smokers subgroups according to their smoking history. Quantitative parameters, such as the number, area at 6 mm~24 mm subpleura and volume of small pulmonary vessels, were extracted by computer software. Differences in small pulmonary vessel parameters among the groups were compared using two-way ANOVA. Results The number, area at 6 mm~24 mm subpleura and volume of small pulmonary vessels in the group at high risk for COPD were lower than those in the normal group (P<0.05). The number, area at 6 mm~24 mm subpleura and volume of small pulmonary vessels in the COPD group were higher than those in the normal group (P<0.05). The number, area of small pulmonary vessels at 6 mm~12 mm subpleura in current smokers with high risk for COPD were higher than those in former smokers with high risk for COPD (P<0.05). Conclusion The number, area, and volume of small pulmonary vessels in populations at high risk for COPD were decreased. Smoking cessation may impede structural changes in small pulmonary vessels in populations at high risk for COPD.
Collapse
Affiliation(s)
- Yu Pu
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Xiuxiu Zhou
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Di Zhang
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Yu Guan
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Xia
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Shiyuan Liu
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| | - Li Fan
- Department of Radiology, Second Affiliated Hospital of PLA Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Ohno Y, Ozawa Y, Nagata H, Ueda T, Yoshikawa T, Takenaka D, Koyama H. Lung Magnetic Resonance Imaging: Technical Advancements and Clinical Applications. Invest Radiol 2024; 59:38-52. [PMID: 37707840 DOI: 10.1097/rli.0000000000001017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Since lung magnetic resonance imaging (MRI) became clinically available, limited clinical utility has been suggested for applying MRI to lung diseases. Moreover, clinical applications of MRI for patients with lung diseases or thoracic oncology may vary from country to country due to clinical indications, type of health insurance, or number of MR units available. Because of this situation, members of the Fleischner Society and of the Japanese Society for Magnetic Resonance in Medicine have published new reports to provide appropriate clinical indications for lung MRI. This review article presents a brief history of lung MRI in terms of its technical aspects and major clinical indications, such as (1) what is currently available, (2) what is promising but requires further validation or evaluation, and (3) which developments warrant research-based evaluations in preclinical or patient studies. We hope this article will provide Investigative Radiology readers with further knowledge of the current status of lung MRI and will assist them with the application of appropriate protocols in routine clinical practice.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- From the Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno); Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ohno and H.N.); Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan (Y. Ozawa and T.U.); Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi, Hyogo, Japan (T.Y., D.T.); and Department of Radiology, Advanced Diagnostic Medical Imaging, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan (H.K.)
| | | | | | | | | | | | | |
Collapse
|
6
|
Xu P, Meersmann T, Wang J, Wang C. Review of oxygen-enhanced lung mri: Pulse sequences for image acquisition and T 1 measurement. Med Phys 2023; 50:5987-6007. [PMID: 37345214 DOI: 10.1002/mp.16553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Oxygen-enhanced MR imaging (OE-MRI) is a special proton imaging technique that can be performed without modifying the scanner hardware. Many fundamental studies have been conducted following the initial reporting of this technique in 1996, illustrating the high potential for its clinical application. This review aims to summarise and analyse current pulse sequences and T1 measurement methods for OE-MRI, including fundamental theories, existing pulse sequences applied to OE-MRI acquisition and T1 mapping. Wash-in and wash-out time identify lung function and are sensitive to ventilation; thus, dynamic OE-MRI is also discussed in this review. We compare OE-MRI with the primary competitive technique, hyperpolarised gas MRI. Finally, an overview of lower-field applications of OE-MRI is highlighted, as relatively recent publications demonstrated positive results. Lower-field OE-MRI, which is lower than 1.5 T, could be an alternative modality for detecting lung diseases. This educational review is aimed at researchers who want a quick summary of the steps needed to perform pulmonary OE-MRI with a particular focus on sequence design, settings, and quantification methods.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Thomas Meersmann
- Sir Peter Mansfield Magnetic Imaging Centre, University of Nottingham, Nottingham, UK
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, China
| | - Jing Wang
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, China
| | - Chengbo Wang
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, China
| |
Collapse
|
7
|
Tibiletti M, Eaden JA, Naish JH, Hughes PJC, Waterton JC, Heaton MJ, Chaudhuri N, Skeoch S, Bruce IN, Bianchi S, Wild JM, Parker GJM. Imaging biomarkers of lung ventilation in interstitial lung disease from 129Xe and oxygen enhanced 1H MRI. Magn Reson Imaging 2023; 95:39-49. [PMID: 36252693 DOI: 10.1016/j.mri.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
PURPOSE To compare imaging biomarkers from hyperpolarised 129Xe ventilation MRI and dynamic oxygen-enhanced MRI (OE-MRI) with standard pulmonary function tests (PFT) in interstitial lung disease (ILD) patients. To evaluate if biomarkers can separate ILD subtypes and detect early signs of disease resolution or progression. STUDY TYPE Prospective longitudinal. POPULATION Forty-one ILD (fourteen idiopathic pulmonary fibrosis (IPF), eleven hypersensitivity pneumonitis (HP), eleven drug-induced ILD (DI-ILD), five connective tissue disease related-ILD (CTD-ILD)) patients and ten healthy volunteers imaged at visit 1. Thirty-four ILD patients completed visit 2 (eleven IPF, eight HP, ten DIILD, five CTD-ILD) after 6 or 26 weeks. FIELD STRENGTH/SEQUENCE MRI was performed at 1.5 T, including inversion recovery T1 mapping, dynamic MRI acquisition with varying oxygen levels, and hyperpolarised 129Xe ventilation MRI. Subjects underwent standard spirometry and gas transfer testing. ASSESSMENT Five 1H MRI and two 129Xe MRI ventilation metrics were compared with spirometry and gas transfer measurements. STATISTICAL TEST To evaluate differences at visit 1 among subgroups: ANOVA or Kruskal-Wallis rank tests with correction for multiple comparisons. To assess the relationships between imaging biomarkers, PFT, age and gender, at visit 1 and for the change between visit 1 and 2: Pearson correlations and multilinear regression models. RESULTS The global PFT tests could not distinguish ILD subtypes. Percentage ventilated volumes were lower in ILD patients than in HVs when measured with 129Xe MRI (HV 97.4 ± 2.6, CTD-ILD: 91.0 ± 4.8 p = 0.017, DI-ILD 90.1 ± 7.4 p = 0.003, HP 92.6 ± 4.0 p = 0.013, IPF 88.1 ± 6.5 p < 0.001), but not with OE-MRI. 129Xe reported more heterogeneous ventilation in DI-ILD and IPF than in HV, and OE-MRI reported more heterogeneous ventilation in DI-ILD and IPF than in HP or CTD-ILD. The longitudinal changes reported by the imaging biomarkers did not correlate with the PFT changes between visits. DATA CONCLUSION Neither 129Xe ventilation nor OE-MRI biomarkers investigated in this study were able to differentiate between ILD subtypes, suggesting that ventilation-only biomarkers are not indicated for this task. Limited but progressive loss of ventilated volume as measured by 129Xe-MRI may be present as the biomarker of focal disease progresses. OE-MRI biomarkers are feasible in ILD patients and do not correlate strongly with PFT. Both OE-MRI and 129Xe MRI revealed more spatially heterogeneous ventilation in DI-ILD and IPF.
Collapse
Affiliation(s)
- Marta Tibiletti
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom
| | - James A Eaden
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; MCMR, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, UK
| | - Paul J C Hughes
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK
| | - John C Waterton
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Matthew J Heaton
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom
| | - Nazia Chaudhuri
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Sarah Skeoch
- Royal National Hospital for Rheumatic Diseases, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK
| | - Ian N Bruce
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK; Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen Bianchi
- Academic Directorate of Respiratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Jim M Wild
- POLARIS, University of Sheffield MRI Unit, Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, UK; Insigneo Insititute for in silico medicine, Sheffield, UK
| | - Geoff J M Parker
- Bioxydyn Limited, Rutherford House, Manchester Science Park, Manchester M15 6SZ, United Kingdom; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| |
Collapse
|
8
|
Murayama K, Smit EJ, Prokop M, Ikeda Y, Fujii K, Nakahara I, Hanamatsu S, Katada K, Ohno Y, Toyama H. A Bayesian estimation method for cerebral blood flow measurement by area-detector CT perfusion imaging. Neuroradiology 2023; 65:65-75. [PMID: 35851924 DOI: 10.1007/s00234-022-03013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Bayesian estimation with advanced noise reduction (BEANR) in CT perfusion (CTP) could deliver more reliable cerebral blood flow (CBF) measurements than the commonly used reformulated singular value decomposition (rSVD). We compared the efficacy of CBF measurement by CTP using BEANR and rSVD, evaluating both relative to N-isopropyl-p-[(123) I]- iodoamphetamine (123I-IMP) single-photon emission computed tomography (SPECT) as a reference standard, in patients with cerebrovascular disease. METHODS Thirty-one patients with suspected cerebrovascular disease underwent both CTP on a 320 detector-row CT system and SPECT. We applied rSVD and BEANR in the ischemic and contralateral regions to create CBF maps and calculate CBF ratios from the ischemic side to the healthy contralateral side (CBF index). The analysis involved comparing the CBF index between CTP methods and SPECT using Pearson's correlation and limits of agreement determined with Bland-Altman analyses, before comparing the mean difference in the CBF index between each CTP method and SPECT using the Wilcoxon matched pairs signed-rank test. RESULTS The CBF indices of BEANR and 123I-IMP SPECT were significantly and positively correlated (r = 0.55, p < 0.0001), but there was no significant correlation between the rSVD method and SPECT (r = 0.15, p > 0.05). BEANR produced smaller limits of agreement for CBF than rSVD. The mean difference in the CBF index between BEANR and SPECT differed significantly from that between rSVD and SPECT (p < 0.001). CONCLUSIONS BEANR has a better potential utility for CBF measurement in CTP than rSVD compared to SPECT in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Kazuhiro Murayama
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan.
| | - Ewoud J Smit
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Mathias Prokop
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Yoshihiro Ikeda
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi, 325-8550, Japan
| | - Kenji Fujii
- Canon Medical Systems Corporation, 1385 Shimoishigami, Otawara, Tochigi, 325-8550, Japan
| | - Ichiro Nakahara
- Department of Comprehensive Strokology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Kazuhiro Katada
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-Cho Toyoake, Aichi, 470-1101, Japan
| |
Collapse
|
9
|
Tanaka Y, Ohno Y, Hanamatsu S, Obama Y, Ueda T, Ikeda H, Iwase A, Fukuba T, Hattori H, Murayama K, Yoshikawa T, Takenaka D, Koyama H, Toyama H. State-of-the-art MR Imaging for Thoracic Diseases. Magn Reson Med Sci 2021; 21:212-234. [PMID: 33952785 PMCID: PMC9199970 DOI: 10.2463/mrms.rev.2020-0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since thoracic MR imaging was first used in a clinical setting, it has been suggested that MR imaging has limited clinical utility for thoracic diseases, especially lung diseases, in comparison with x-ray CT and positron emission tomography (PET)/CT. However, in many countries and states and for specific indications, MR imaging has recently become practicable. In addition, recently developed pulmonary MR imaging with ultra-short TE (UTE) and zero TE (ZTE) has enhanced the utility of MR imaging for thoracic diseases in routine clinical practice. Furthermore, MR imaging has been introduced as being capable of assessing pulmonary function. It should be borne in mind, however, that these applications have so far been academically and clinically used only for healthy volunteers, but not for patients with various pulmonary diseases in Japan or other countries. In 2020, the Fleischner Society published a new report, which provides consensus expert opinions regarding appropriate clinical indications of pulmonary MR imaging for not only oncologic but also pulmonary diseases. This review article presents a brief history of MR imaging for thoracic diseases regarding its technical aspects and major clinical indications in Japan 1) in terms of what is currently available, 2) promising but requiring further validation or evaluation, and 3) developments warranting research investigations in preclinical or patient studies. State-of-the-art MR imaging can non-invasively visualize lung structural and functional abnormalities without ionizing radiation and thus provide an alternative to CT. MR imaging is considered as a tool for providing unique information. Moreover, prospective, randomized, and multi-center trials should be conducted to directly compare MR imaging with conventional methods to determine whether the former has equal or superior clinical relevance. The results of these trials together with continued improvements are expected to update or modify recommendations for the use of MRI in near future.
Collapse
Affiliation(s)
- Yumi Tanaka
- Department of Radiology, Fujita Health University School of Medicine
| | - Yoshiharu Ohno
- Department of Radiology, Fujita Health University School of Medicine.,Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine
| | - Yuki Obama
- Department of Radiology, Fujita Health University School of Medicine
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine
| | - Akiyoshi Iwase
- Department of Radiology, Fujita Health University Hospital
| | - Takashi Fukuba
- Department of Radiology, Fujita Health University Hospital
| | - Hidekazu Hattori
- Department of Radiology, Fujita Health University School of Medicine
| | - Kazuhiro Murayama
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine
| | | | | | | | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine
| |
Collapse
|
10
|
Sun XW, Lin YN, Ding YJ, Li SQ, Li HP, Li QY. Bronchial Variation: Anatomical Abnormality May Predispose Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:423-431. [PMID: 33654392 PMCID: PMC7914054 DOI: 10.2147/copd.s297777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Noxious particulate matter in the air is a primary cause of chronic obstructive pulmonary disease (COPD). The bronchial tree acts to filter these materials in the air and preserve the integrity of the bronchi. Accumulating evidence has demonstrated that smoking and air pollutants are the most prominent risk factors of COPD. Bifurcations in the airway may act as deposition sites for the retention of inhaled particles, however, little is known concerning the impacts of abnormalities of the bronchial anatomy in the pathogenesis of COPD. Studies have reported significant associations between bronchial variations and the symptoms in COPD. In particular, it has been shown that bronchial variations in the central airway tree may contribute to the development of COPD. In this review, we identified three common types of bronchial variation that were used to formulate a unifying hypothesis to explain how bronchial variations contribute to the development of COPD. We also investigated the current evidence for the involvement of specific genes including fibroblast growth factor 10 (Fgf10) and bone morphogenetic protein 4 (Bmp4) in the formation of bronchial variation. Finally, we highlight novel assessment strategies and opportunities for future research of bronchial variations and genetic susceptibility in COPD and comorbidities. Our data strongly highlight the role of bronchial variations in the development, complications, and acute exacerbation of COPD.
Collapse
Affiliation(s)
- Xian Wen Sun
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Ni Lin
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yong Jie Ding
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shi Qi Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong Peng Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qing Yun Li
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Institute of Respiratory Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Cowell GW. Editorial for: "3D Oxygen-Enhanced MR Imaging at 3T MR System: Comparison With Thin-Section CT of Quantitative Capability for Pulmonary Functional Loss Assessment and Clinical Stage Classification of COPD in Smokers". J Magn Reson Imaging 2020; 53:1052-1053. [PMID: 33354851 DOI: 10.1002/jmri.27471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gordon W Cowell
- Department of Imaging, Queen Elizabeth University Hospital, Glasgow, UK.,College of MVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|