1
|
Chen Q, Worthoff WA, Shah NJ. Accelerated multiple-quantum-filtered sodium magnetic resonance imaging using compressed sensing at 7 T. Magn Reson Imaging 2024; 107:138-148. [PMID: 38171423 DOI: 10.1016/j.mri.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/17/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Multiple-quantum-filtered (MQF) sodium magnetic resonance imaging (MRI), such as enhanced single-quantum and triple-quantum-filtered imaging of 23Na (eSISTINA), enables images to be weighted towards restricted sodium, a promising biomarker in clinical practice, but often suffers from clinically infeasible acquisition times and low image quality. This study aims to mitigate the above limitation by implementing a novel eSISTINA sequence at 7 T with the application of compressed sensing (CS) to accelerate eSISTINA acquisitions without a noticeable loss of information. METHODS A novel eSISTINA sequence with a 3D spiral-based sampling scheme was implemented at 7 T for the application of CS. Fully sampled datasets were obtained from one phantom and ten healthy subjects, and were then retrospectively undersampled by various undersampling factors. CS undersampled reconstructions were compared to fully sampled and undersampled nonuniform fast Fourier transform (NUFFT) reconstructions. Reconstruction performance was evaluated based on structural similarity (SSIM), signal-to-noise ratio (SNR), weightings towards total and compartmental sodium, and in vivo quantitative estimates. RESULTS CS-based phantom and in vivo images have less noise and better structural delineation while maintaining the weightings towards total, non-restricted (predominantly extracellular), and restricted (primarily intracellular) sodium. CS generally outperforms NUFFT with a higher SNR and a better SSIM, except for the SSIM in TQ brain images, which is likely due to substantial noise contamination. CS enables in vivo quantitative estimates with <15% errors at an undersampling factor of up to two. CONCLUSIONS Successful implementation of an eSISTINA sequence with an incoherent sampling scheme at 7 T was demonstrated. CS can accelerate eSISTINA by up to twofold at 7 T with reduced noise levels compared to NUFFT, while maintaining major structural information, reasonable weightings towards total and compartmental sodium, and relatively reliable in vivo quantification. The associated reduction in acquisition time has the potential to facilitate the clinical applicability of MQF sodium MRI.
Collapse
Affiliation(s)
- Qingping Chen
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH, Jülich, Germany; Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH, Jülich, Germany.
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH, Jülich, Germany; Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich GmbH, Jülich, Germany; JARA-BRAIN-Translational Medicine, Aachen, Germany; Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Baker RR, Muthurangu V, Rega M, Montalt‐Tordera J, Rot S, Solanky BS, Gandini Wheeler‐Kingshott CAM, Walsh SB, Steeden JA. 2D sodium MRI of the human calf using half-sinc excitation pulses and compressed sensing. Magn Reson Med 2024; 91:325-336. [PMID: 37799019 PMCID: PMC10962573 DOI: 10.1002/mrm.29841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 10/07/2023]
Abstract
PURPOSE Sodium MRI can be used to quantify tissue sodium concentration (TSC) in vivo; however, UTE sequences are required to capture the rapidly decaying signal. 2D MRI enables high in-plane resolution but typically has long TEs. Half-sinc excitation may enable UTE; however, twice as many readouts are necessary. Scan time can be minimized by reducing the number of signal averages (NSAs), but at a cost to SNR. We propose using compressed sensing (CS) to accelerate 2D half-sinc acquisitions while maintaining SNR and TSC. METHODS Ex vivo and in vivo TSC were compared between 2D spiral sequences with full-sinc (TE = 0.73 ms, scan time ≈ 5 min) and half-sinc excitation (TE = 0.23 ms, scan time ≈ 10 min), with 150 NSAs. Ex vivo, these were compared to a reference 3D sequence (TE = 0.22 ms, scan time ≈ 24 min). To investigate shortening 2D scan times, half-sinc data was retrospectively reconstructed with fewer NSAs, comparing a nonuniform fast Fourier transform to CS. Resultant TSC and image quality were compared to reference 150 NSAs nonuniform fast Fourier transform images. RESULTS TSC was significantly higher from half-sinc than from full-sinc acquisitions, ex vivo and in vivo. Ex vivo, half-sinc data more closely matched the reference 3D sequence, indicating improved accuracy. In silico modeling confirmed this was due to shorter TEs minimizing bias caused by relaxation differences between phantoms and tissue. CS was successfully applied to in vivo, half-sinc data, maintaining TSC and image quality (estimated SNR, edge sharpness, and qualitative metrics) with ≥50 NSAs. CONCLUSION 2D sodium MRI with half-sinc excitation and CS was validated, enabling TSC quantification with 2.25 × 2.25 mm2 resolution and scan times of ≤5 mins.
Collapse
Affiliation(s)
- Rebecca R. Baker
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUK
| | - Vivek Muthurangu
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUK
| | - Marilena Rega
- Institute of Nuclear MedicineUniversity College HospitalLondonUK
| | | | - Samuel Rot
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Bhavana S. Solanky
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
| | - Claudia A. M. Gandini Wheeler‐Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain SciencesUniversity College LondonLondonUK
- Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
- Digital Neuroscience Research UnitIRCCS Mondino FoundationPaviaItaly
| | | | - Jennifer A. Steeden
- UCL Centre for Translational Cardiovascular ImagingUniversity College LondonLondonUK
| |
Collapse
|
3
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
4
|
Tabari A, Lang M, Awan K, Liu W, Clifford B, Lo WC, Splitthoff DN, Cauley S, Rapalino O, Schaefer P, Huang SY, Conklin J. Optimized flow compensation for contrast-enhanced T1-weighted Wave-CAIPI 3D MPRAGE imaging of the brain. Eur Radiol Exp 2023; 7:34. [PMID: 37394534 DOI: 10.1186/s41747-023-00351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 07/04/2023] Open
Abstract
Flow-related artifacts have been observed in highly accelerated T1-weighted contrast-enhanced wave-controlled aliasing in parallel imaging (CAIPI) magnetization-prepared rapid gradient-echo (MPRAGE) imaging and can lead to diagnostic uncertainty. We developed an optimized flow-mitigated Wave-CAIPI MPRAGE acquisition protocol to reduce these artifacts through testing in a custom-built flow phantom. In the phantom experiment, maximal flow artifact reduction was achieved with the combination of flow compensation gradients and radial reordered k-space acquisition and was included in the optimized sequence. Clinical evaluation of the optimized MPRAGE sequence was performed in 64 adult patients, who all underwent contrast-enhanced Wave-CAIPI MPRAGE imaging without flow-compensation and with optimized flow-compensation parameters. All images were evaluated for the presence of flow-related artifacts, signal-to-noise ratio (SNR), gray-white matter contrast, enhancing lesion contrast, and image sharpness on a 3-point Likert scale. In the 64 cases, the optimized flow mitigation protocol reduced flow-related artifacts in 89% and 94% of the cases for raters 1 and 2, respectively. SNR, gray-white matter contrast, enhancing lesion contrast, and image sharpness were rated as equivalent for standard and flow-mitigated Wave-CAIPI MPRAGE in all subjects. The optimized flow mitigation protocol successfully reduced the presence of flow-related artifacts in the majority of cases.Relevance statementAs accelerated MRI using novel encoding schemes become increasingly adopted in clinical practice, our work highlights the need to recognize and develop strategies to minimize the presence of unexpected artifacts and reduction in image quality as potential compromises to achieving short scan times.Key points• Flow-mitigation technique led to an 89-94% decrease in flow-related artifacts.• Image quality, signal-to-noise ratio, enhancing lesion conspicuity, and image sharpness were preserved with the flow mitigation technique.• Flow mitigation reduced diagnostic uncertainty in cases where flow-related artifacts mimicked enhancing lesions.
Collapse
Affiliation(s)
- Azadeh Tabari
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 55 Fruit Street, Charlestown, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Min Lang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 55 Fruit Street, Charlestown, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Komal Awan
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 55 Fruit Street, Charlestown, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Wei Liu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | | | | | | | - Stephen Cauley
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 55 Fruit Street, Charlestown, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Otto Rapalino
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 55 Fruit Street, Charlestown, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Pamela Schaefer
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 55 Fruit Street, Charlestown, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 55 Fruit Street, Charlestown, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Conklin
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 55 Fruit Street, Charlestown, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Ruck L, Mennecke A, Wilferth T, Lachner S, Müller M, Egger N, Doerfler A, Uder M, Nagel AM. Influence of image contrasts and reconstruction methods on the classification of multiple sclerosis-like lesions in simulated sodium magnetic resonance imaging. Magn Reson Med 2023; 89:1102-1116. [PMID: 36373186 DOI: 10.1002/mrm.29476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/21/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the classifiability of small multiple sclerosis (MS)-like lesions in simulated sodium (23 Na) MRI for different 23 Na MRI contrasts and reconstruction methods. METHODS 23 Na MRI and 23 Na inversion recovery (IR) MRI of a phantom and simulated brain with and without lesions of different volumes (V = 1.3-38.2 nominal voxels) were simulated 100 times by adding Gaussian noise matching the SNR of real 3T measurements. Each simulation was reconstructed with four different reconstruction methods (Gridding without and with Hamming filter, Compressed sensing (CS) reconstruction without and with anatomical 1 H prior information). Based on the mean signals within the lesion volumes of simulations with and without lesions, receiver operating characteristics (ROC) were determined and the area under the curve (AUC) was calculated to assess the classifiability for each lesion volume. RESULTS Lesions show higher classifiability in 23 Na MRI than in 23 Na IR MRI. For typical parameters and SNR of a 3T scan, the voxel normed minimal classifiable lesion volume (AUC > 0.9) is 2.8 voxels for 23 Na MRI and 19 voxels for 23 Na IR MRI, respectively. In terms of classifiability, Gridding with Hamming filter and CS without anatomical 1 H prior outperform CS reconstruction with anatomical 1 H prior. CONCLUSION Reliability of lesion classifiability strongly depends on the lesion volume and the 23 Na MRI contrast. Additional incorporation of 1 H prior information in the CS reconstruction was not beneficial for the classification of small MS-like lesions in 23 Na MRI.
Collapse
Affiliation(s)
- Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|