1
|
van der Heijden RA, Tamada D, Mao L, Rice J, Reeder SB. Relaxivity and In Vivo Human Performance of Brand Name Versus Generic Ferumoxytol. Invest Radiol 2025; 60:319-327. [PMID: 39437023 DOI: 10.1097/rli.0000000000001130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
OBJECTIVES Ferumoxytol is a superparamagnetic iron-oxide product that is increasingly used off-label for contrast-enhanced magnetic resonance imaging (MRI) and magnetic resonance angiography (MRA). With the recent regulatory approval of generic ferumoxytol, there may be an opportunity to reduce cost, so long as generic ferumoxytol has similar imaging performance to brand name ferumoxytol. This study aims to compare the relaxation-concentration dependence and MRI performance of brand name ferumoxytol with generic ferumoxytol through phantom and in vivo experiments. The secondary purpose was to determine the optimal flip angle and optimal weight-based dosing. MATERIALS AND METHODS Phantom experiments were performed using both brand name (AMAG Pharmaceuticals) and generic (Sandoz Pharmaceuticals) ferumoxytol products. Each ferumoxytol product was diluted in saline, and separately in adult bovine whole blood, at 5 iron concentrations ranging from 0.3 to 2.1 mM. Vials were placed in an MR-compatible water bath at 37°C and imaged at both 1.5 T and 3.0 T. Longitudinal and transverse relaxation rate constants (R1, R2, R2*) were measured for each ferumoxytol concentration, and relaxation-concentration curves were estimated. An in vivo dose accumulation study with flip angle optimization was also implemented using a cross-over design, in healthy volunteers. Cumulative doses of 1, 3, 5, and 7 mg/kg diluted ferumoxytol were administered prior to MRA of the chest on a 3.0 T clinical MRI system. For each incremental dose, the flip angle was varied from 40° to 10° in -10° increments over 5 breath-holds followed by a repeated 40° flip angle acquisition. Regions of interest were drawn in the aortic arch, paraspinous muscles, and a noisy area outside of the patient, free from obvious artifact. Signal-to-noise ratio (SNR) was calculated as the quotient of the average signal in the aortic arch and the standard deviation of the noise, corrected for a Rician noise distribution. Contrast-to-noise ratio was calculated as the difference in SNR between the aorta and paraspinous muscles. Absolute SNR and contrast-to-noise ratio values were compared between products for different flip angles and doses. RESULTS There were no statistically significant or clinically relevant differences in relaxation-concentration curves between AMAG and Sandoz products in phantom experiments. Six healthy volunteers (38.8 ± 11.5 years, 3 female, 3 male) were successfully recruited and completed both imaging visits. No clinically relevant differences in image quality were observed between ferumoxytol products. The optimal flip angle range and dose for both products was 20°-30° and 5 mg/kg, respectively. CONCLUSIONS Brand name and generic ferumoxytol products can be used interchangeably for MRA.
Collapse
Affiliation(s)
- Rianne A van der Heijden
- From the Department of Radiology, University of Wisconsin-Madison, Madison, WI (R.A.V., D.T., J.R., S.B.R.); Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands (R.A.V.); Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI (L.M.); Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI (J.R.); Department of Medical Physics, University of Wisconsin-Madison, Madison, WI (S.B.R.); Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI (S.B.R.); Department of Medicine, University of Wisconsin-Madison, Madison, WI (S.B.R.); and Department of Emergency Medicine, University of Wisconsin-Madison, Madison, WI (S.B.R.)
| | | | | | | | | |
Collapse
|
2
|
Negri A, Conti A, Milan E, Forlin E, Gherlinzoni F, Morana G, Gottardi M, Matteazzi P, Speghini A, Bongers A, Marzola P. Evaluation of Self-Regulating Doped Ferrite Nanoparticles with Glucose, Chitosan, and Poly-Ethylene Glycol Coatings for Hyperthermia and Dual Imaging. Int J Nanomedicine 2025; 20:3891-3906. [PMID: 40177123 PMCID: PMC11963800 DOI: 10.2147/ijn.s506443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 04/05/2025] Open
Abstract
Purpose This study investigates the theranostic potential of doped ferrite nanoparticles (NPs) with self-regulating temperature (SRT) properties, termed M55, coated with glucose (GM55), chitosan (CM55), and poly-ethylene glycol (PM55). The NPs were assessed for their physicochemical attributes, magnetic fluid hyperthermia (MFH) efficacy, dual-imaging capabilities in Magnetic Resonance Imaging (MRI) and Magnetic Particle Imaging (MPI), cytocompatibility, and cellular uptake. Methods Physicochemical characterization was conducted using Fourier-transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and zeta potential measurements. The biocompatibility and cellular uptake were evaluated in MDA-MB-231 breast cancer cells, and MFH performance was tested in vitro. Following intravenous administration, MRI and MPI functionalities were analyzed through phantom studies and in vivo murine models. Results Coated M55 NPs displayed high colloidal stability in water and effective functionalization. The specific absorption rate (SAR) of 24.4 ± 1.4 W/g confirmed their suitability for MFH applications. In vitro assays indicated excellent biocompatibility and substantial cellular internalization, with GM55 showing the highest uptake and MFH efficiency, reducing cell viability to 50.62 ± 3.92% post two treatment cycles, compared to 67.71 ± 6.11% (CM55) and 71.39 ± 5.84% (PM55). MRI transverse relaxivity (r2) values were notably high across all coatings, enhancing imaging contrast. MPI analysis demonstrated superior cell labeling sensitivity, with GM55 achieving the most pronounced detection. In vivo imaging confirmed effective NPs accumulation in the liver, underscoring their utility as dual MRI/MPI contrast agents (CAs). Conclusion Coated M55 NPs exhibit significant promise as multifunctional theranostic agents for cancer treatment. GM55, in particular, offers superior MFH efficacy and cellular uptake, while CM55 and PM55 may present unique advantages for alternative biomedical applications. The dual-imaging capabilities of these NPs provide a robust platform for real-time monitoring of distribution and therapeutic outcomes. Future investigations will focus on optimizing NPs formulations and expanding in vivo assessments to advance clinical translation.
Collapse
Affiliation(s)
- Alessandro Negri
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Anita Conti
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Emil Milan
- Nanomaterials Research Group, Department of Biotechnology, University of Verona, Verona, Italy
| | - Enrico Forlin
- M.B.N. Nanomaterialia S.p.A., Carbonera, Treviso, Italy
| | | | - Giovanni Morana
- Foundation for Nanotheranostics Research in Cancer Therapy, Treviso, Italy
| | - Michele Gottardi
- Foundation for Nanotheranostics Research in Cancer Therapy, Treviso, Italy
| | - Paolo Matteazzi
- M.B.N. Nanomaterialia S.p.A., Carbonera, Treviso, Italy
- Foundation for Nanotheranostics Research in Cancer Therapy, Treviso, Italy
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology, University of Verona, Verona, Italy
- National Interuniversity Consortium of Materials Science and Technology, Firenze, Italy
| | - Andre Bongers
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Pasquina Marzola
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
- National Interuniversity Consortium of Materials Science and Technology, Firenze, Italy
| |
Collapse
|
3
|
Shen H, Wang X, Tian F, Li M, Xie K, Ma X. Enhanced functionalization of superparamagnetic Fe 3O 4 nanoparticles for advanced drug enrichment and separation applications. BMC Chem 2024; 18:181. [PMID: 39300584 DOI: 10.1186/s13065-024-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/31/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND superparamagnetic ferroferric oxide (Fe3O4) nanoparticles can be extensively functionalized for applications in drug enrichment and separation. Their high magnetic responsiveness and controllable surface modification enable rapid drug enrichment and separation under external magnetic fields. This study aimed to enhance the application potential of superparamagnetic Fe3O4 nanoparticles in the field of drug enrichment and separation by functionalizing these nanoparticles to improve their biocompatibility and targeting capabilities. METHODS superparamagnetic Fe3O4 nanoparticles functionalized with dopamine were synthesized using benzyl alcohol as the solvent and iron acetylacetonate as the precursor. The dopamine-functionalized superparamagnetic iron oxide nanoparticles were used to analyze protein enrichment and separation. Characterization of the nanoparticles was conducted, including analysis of particle size distribution, Zeta potential, and fluorescence spectra using a fluorescence spectrophotometer. RESULTS the Fe3O4 nanoparticles maintained high magnetism from the original material and exhibited uniform particle size distribution and stable Zeta potential. The saturation magnetization of dopamine-functionalized superparamagnetic Fe3O4 nanoparticles showed no significant difference compared to before coating, indicating minimal influence of dopamine on the internal magnetic core of the nanoparticles. The Fe3O4 nanoparticles demonstrated good biocompatibility and stability. CONCLUSION functionalization of superparamagnetic Fe3O4 nanoparticles significantly enhances their efficiency in drug enrichment and separation processes, suggesting broad applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Hao Shen
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaoye Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Fei Tian
- Department of Pediatric Surgery, Tianjin Children's Hospital, Tianjin, 300074, China
| | - Miaomiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Keliang Xie
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xinlong Ma
- Department of Orthopedics, Tianjin University, Tianjin Hospital, Tianjin, 300211, China.
| |
Collapse
|
4
|
Si G, Du Y, Tang P, Ma G, Jia Z, Zhou X, Mu D, Shen Y, Lu Y, Mao Y, Chen C, Li Y, Gu N. Unveiling the next generation of MRI contrast agents: current insights and perspectives on ferumoxytol-enhanced MRI. Natl Sci Rev 2024; 11:nwae057. [PMID: 38577664 PMCID: PMC10989670 DOI: 10.1093/nsr/nwae057] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) is a pivotal tool for global disease diagnosis and management. Since its clinical availability in 2009, the off-label use of ferumoxytol for ferumoxytol-enhanced MRI (FE-MRI) has significantly reshaped CE-MRI practices. Unlike MRI that is enhanced by gadolinium-based contrast agents, FE-MRI offers advantages such as reduced contrast agent dosage, extended imaging windows, no nephrotoxicity, higher MRI time efficiency and the capability for molecular imaging. As a leading superparamagnetic iron oxide contrast agent, ferumoxytol is heralded as the next generation of contrast agents. This review delineates the pivotal clinical applications and inherent technical superiority of FE-MRI, providing an avant-garde medical-engineering interdisciplinary lens, thus bridging the gap between clinical demands and engineering innovations. Concurrently, we spotlight the emerging imaging themes and new technical breakthroughs. Lastly, we share our own insights on the potential trajectory of FE-MRI, shedding light on its future within the medical imaging realm.
Collapse
Affiliation(s)
- Guangxiang Si
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yue Du
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Peng Tang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Gao Ma
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhaochen Jia
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 200126, China
| | - Dan Mu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yan Shen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Yi Lu
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Mao
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
5
|
Chudobiński C, Świderski B, Antoniuk I, Kurek J. Enhancements in Radiological Detection of Metastatic Lymph Nodes Utilizing AI-Assisted Ultrasound Imaging Data and the Lymph Node Reporting and Data System Scale. Cancers (Basel) 2024; 16:1564. [PMID: 38672646 PMCID: PMC11048706 DOI: 10.3390/cancers16081564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The paper presents a novel approach for the automatic detection of neoplastic lesions in lymph nodes (LNs). It leverages the latest advances in machine learning (ML) with the LN Reporting and Data System (LN-RADS) scale. By integrating diverse datasets and network structures, the research investigates the effectiveness of ML algorithms in improving diagnostic accuracy and automation potential. Both Multinominal Logistic Regression (MLR)-integrated and fully connected neuron layers are included in the analysis. The methods were trained using three variants of combinations of histopathological data and LN-RADS scale labels to assess their utility. The findings demonstrate that the LN-RADS scale improves prediction accuracy. MLR integration is shown to achieve higher accuracy, while the fully connected neuron approach excels in AUC performance. All of the above suggests a possibility for significant improvement in the early detection and prognosis of cancer using AI techniques. The study underlines the importance of further exploration into combined datasets and network architectures, which could potentially lead to even greater improvements in the diagnostic process.
Collapse
Affiliation(s)
- Cezary Chudobiński
- Copernicus Regional Multi-Specialty Oncology and Trauma Centre, 93-513 Lódź, Poland;
| | - Bartosz Świderski
- Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (B.Ś.); (I.A.)
| | - Izabella Antoniuk
- Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (B.Ś.); (I.A.)
| | - Jarosław Kurek
- Department of Artificial Intelligence, Institute of Information Technology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (B.Ś.); (I.A.)
| |
Collapse
|
6
|
Scafa Udriște A, Burdușel AC, Niculescu AG, Rădulescu M, Grumezescu AM. Metal-Based Nanoparticles for Cardiovascular Diseases. Int J Mol Sci 2024; 25:1001. [PMID: 38256075 PMCID: PMC10815551 DOI: 10.3390/ijms25021001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
7
|
Kawassaki R, Romano M, Klimuk Uchiyama M, Cardoso RM, Baptista M, Farsky SHP, Chaim KT, Guimarães RR, Araki K. Novel Gadolinium-Free Ultrasmall Nanostructured Positive Contrast for Magnetic Resonance Angiography and Imaging. NANO LETTERS 2023; 23:5497-5505. [PMID: 37300521 PMCID: PMC10312191 DOI: 10.1021/acs.nanolett.3c00665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Nanostructured contrast agents are promising alternatives to Gd3+-based chelates in magnetic resonance (MR) imaging techniques. A novel ultrasmall paramagnetic nanoparticle (UPN) was strategically designed to maximize the number of exposed paramagnetic sites and r1 while minimizing r2, by decorating 3 nm titanium dioxide nanoparticles with suitable amounts of iron oxide. Its relaxometric parameters are comparable to those of gadoteric acid (GA) in agar phantoms, and the r2/r1 ratio of 1.38 at 3 T is close to the ideal unitary value. The strong and prolonged contrast enhancement of UPN before renal excretion was confirmed by T1-weighted MR images of Wistar rats after intravenous bolus injection. Those results associated with good biocompatibility indicate its high potential as an alternative blood-pool contrast agent to the GA gold standard for MR angiography, especially for patients with severe renal impairment.
Collapse
Affiliation(s)
- Rodrigo
Ken Kawassaki
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mariana Romano
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mayara Klimuk Uchiyama
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
- Laboratory
of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology
and Oncology, Faculty of Medicine, University
of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Roberta Mansini Cardoso
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Maurício
S. Baptista
- Laboratory
of Interfaces and Photoinduced Processes, Department of Biochemistry,
Institute of Chemistry, University of Sao
Paulo, Sao Paulo 05508-000, Brazil
| | - Sandra H. P. Farsky
- Laboratory
of Inflammation and Immunotoxicology, Department of Clinical and Toxicological
Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Khallil Taverna Chaim
- Laboratory
of Magnetic Resonance in Neuroradiology (LIM44), Department of Radiology
and Oncology, Faculty of Medicine, University
of Sao Paulo, Sao Paulo 01246-903, Brazil
- Imaging
Platform (PISA), Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of Sao Paulo, Sao Paulo 01246-903, Brazil
| | - Robson Raphael Guimarães
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Koiti Araki
- Laboratory
of Supramolecular Chemistry and Nanotechnology, Department of Fundamental
Chemistry, Institute of Chemistry, University
of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
8
|
Laissy J. Editorial for “Comparison of Three Ultrasmall, Superparamagnetic Iron Oxide Nanoparticles for Magnetic Resonance Imaging at 3.0 T”. J Magn Reson Imaging 2022; 57:1830-1831. [PMID: 36269569 DOI: 10.1002/jmri.28452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jean‐Pierre Laissy
- Department of Radiology Hôpital Bichat AP‐HP Paris Cedex France
- Department of Radiology Hôpital Lariboisière APHP Paris France
- INSERM U1148 France
- DHU FIRE, University de Paris France
| |
Collapse
|