1
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
2
|
Feldman T, Ostrovskiy D, Yakovleva M, Dontsov A, Borzenok S, Ostrovsky M. Lipofuscin-Mediated Photic Stress Induces a Dark Toxic Effect on ARPE-19 Cells. Int J Mol Sci 2022; 23:12234. [PMID: 36293088 PMCID: PMC9602730 DOI: 10.3390/ijms232012234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2023] Open
Abstract
Lipofuscin granules from retinal pigment epithelium (RPE) cells contain bisretinoid fluorophores, which are photosensitizers and are phototoxic to cells. In the presence of oxygen, bisretinoids are oxidized to form various products, containing aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that bisretinoid oxidation and degradation products have both hydrophilic and amphiphilic properties, allowing their diffusion through the lipofuscin granule membrane into the RPE cell cytoplasm, and are thiobarbituric acid (TBA)-active. The purpose of the present study was to determine if these products exhibit a toxic effect to the RPE cell also in the absence of light. The experiments were performed using the lipofuscin-fed ARPE-19 cell culture. The RPE cell viability analysis was performed with the use of flow cytofluorimetry and laser scanning confocal microscopy. The results obtained indicated that the cell viability of the lipofuscin-fed ARPE-19 sample was clearly reduced not immediately after visible light irradiation for 18 h, but after 4 days maintaining in the dark. Consequently, we could conclude that bisretinoid oxidation products have a damaging effect on the RPE cell in the dark and can be considered as an aggravating factor in age-related macular degeneration progression.
Collapse
Affiliation(s)
- Tatiana Feldman
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Dmitriy Ostrovskiy
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
- Sv. Fyodorov Eye Microsurgery Complex, 59a Beskudnikovsky bld., 127486 Moscow, Russia
| | - Marina Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Alexander Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Sergey Borzenok
- Sv. Fyodorov Eye Microsurgery Complex, 59a Beskudnikovsky bld., 127486 Moscow, Russia
| | - Mikhail Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Leninskiye Gory 1, 119234 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
3
|
Feldman TB, Dontsov AE, Yakovleva MA, Ostrovsky MA. Photobiology of lipofuscin granules in the retinal pigment epithelium cells of the eye: norm, pathology, age. Biophys Rev 2022; 14:1051-1065. [PMID: 36124271 PMCID: PMC9481861 DOI: 10.1007/s12551-022-00989-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 01/10/2023] Open
Abstract
Lipofuscin granules (LGs) are accumulated in the retinal pigment epithelium (RPE) cells. The progressive LG accumulation can somehow lead to pathology and accelerate the aging process. The review examines composition, spectral properties and photoactivity of LGs isolated from the human cadaver eyes. By use of atomic force microscopy and near-field microscopy, we have revealed the fluorescent heterogeneity of LGs. We have discovered the generation of reactive oxygen species by LGs, and found that LGs and melanolipofuscin granules are capable of photoinduced oxidation of lipids. It was shown that A2E, as the main fluorophore (bisretinoid) of LGs, is much less active as an oxidation photosensitizer than other fluorophores (bisretinoids) of LGs. Photooxidized products of bisretinoids pose a much greater danger to the cell than non-oxidized one. Our studies of the fluorescent properties of LGs and their fluorophores (bisretinoids) showed for the first time that their spectral characteristics change (shift to the short-wavelength region) in pathology and after exposure to ionizing radiation. By recording the fluorescence spectra and fluorescence decay kinetics of oxidized products of LG fluorophores, it is possible to improve the methods of early diagnosis of degenerative diseases. Lipofuscin ("aging pigment") is not an inert "slag". The photoactivity of LGs can pose a significant danger to the RPE cells. Fluorescence characteristics of LGs are a tool to detect early stages of degeneration in the retina and RPE.
Collapse
Affiliation(s)
- T. B. Feldman
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - A. E. Dontsov
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M. A. Yakovleva
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - M. A. Ostrovsky
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Różanowska MB, Różanowski B. Photodegradation of Lipofuscin in Suspension and in ARPE-19 Cells and the Similarity of Fluorescence of the Photodegradation Product with Oxidized Docosahexaenoate. Int J Mol Sci 2022; 23:ijms23020922. [PMID: 35055111 PMCID: PMC8778276 DOI: 10.3390/ijms23020922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Retinal lipofuscin accumulates with age in the retinal pigment epithelium (RPE), where its fluorescence properties are used to assess retinal health. It was observed that there is a decrease in lipofuscin fluorescence above the age of 75 years and in the early stages of age-related macular degeneration (AMD). The purpose of this study was to investigate the response of lipofuscin isolated from human RPE and lipofuscin-laden cells to visible light, and to determine whether an abundant component of lipofuscin, docosahexaenoate (DHA), can contribute to lipofuscin fluorescence upon oxidation. Exposure of lipofuscin to visible light leads to a decrease in its long-wavelength fluorescence at about 610 nm, with a concomitant increase in the short-wavelength fluorescence. The emission spectrum of photodegraded lipofuscin exhibits similarity with that of oxidized DHA. Exposure of lipofuscin-laden cells to light leads to a loss of lipofuscin granules from cells, while retaining cell viability. The spectral changes in fluorescence in lipofuscin-laden cells resemble those seen during photodegradation of isolated lipofuscin. Our results demonstrate that fluorescence emission spectra, together with quantitation of the intensity of long-wavelength fluorescence, can serve as a marker useful for lipofuscin quantification and for monitoring its oxidation, and hence useful for screening the retina for increased oxidative damage and early AMD-related changes.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: ; Tel.: +44-2920875057
| | - Bartosz Różanowski
- Institute of Biology, Pedagogical University of Kraków, 30-084 Kraków, Poland;
| |
Collapse
|
5
|
Lipofuscin Granule Bisretinoid Oxidation in the Human Retinal Pigment Epithelium forms Cytotoxic Carbonyls. Int J Mol Sci 2021; 23:ijms23010222. [PMID: 35008647 PMCID: PMC8745408 DOI: 10.3390/ijms23010222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 01/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of central blindness among the elderly. AMD is associated with progressive accumulation of lipofuscin granules in retinal pigment epithelium (RPE) cells. Lipofuscin contains bisretinoid fluorophores, which are photosensitizers and are phototoxic to RPE and neuroretinal cells. In the presence of oxygen, bisretinoids are also oxidized, forming various products, consisting primarily of aldehydes and ketones, which are also potentially cytotoxic. In a prior study, we identified that in AMD, bisretinoid oxidation products are increased in RPE lipofuscin granules. The purpose of the present study was to determine if these products were toxic to cellular structures. The physicochemical characteristics of bisretinoid oxidation products in lipofuscin, which were obtained from healthy donor eyes, were studied. Raman spectroscopy and time-of-flight secondary ion mass spectrometry (ToF–SIMS) analysis identified the presence of free-state aldehydes and ketones within the lipofuscin granules. Together, fluorescence spectroscopy, high-performance liquid chromatography, and mass spectrometry revealed that bisretinoid oxidation products have both hydrophilic and amphiphilic properties, allowing their diffusion through lipofuscin granule membrane into the RPE cell cytoplasm. These products contain cytotoxic carbonyls, which can modify cellular proteins and lipids. Therefore, bisretinoid oxidation products are a likely aggravating factor in the pathogenesis of AMD.
Collapse
|
6
|
Zhang D, Robinson K, Washington I. C20D3-Vitamin A Prevents Retinal Pigment Epithelium Atrophic Changes in a Mouse Model. Transl Vis Sci Technol 2021; 10:8. [PMID: 34878528 PMCID: PMC8662574 DOI: 10.1167/tvst.10.14.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Purpose This study aimed to evaluate the contribution of vitamin A dimerization to retinal pigment epithelium (RPE) atrophic changes. Leading causes of irreversible blindness, including Stargardt disease and age-related macular degeneration (AMD), occur as a result of atrophic changes in RPE. The cause of the RPE atrophic changes is not apparent. During the vitamin A cycle, vitamin A dimerizes, leading to vitamin A cycle byproducts, such as vitamin A dimers, in the RPE. Methods To study the consequence of vitamin A dimerization to RPE atrophic changes, we used a rodent model with accelerated vitamin A dimerization, Abca4−/−/Rdh8−/− mice, and the vitamin A analog C20D3-vitamin A to selectively ameliorate the accelerated rate of vitamin A dimerization. Results We show that ameliorating the rate of vitamin A dimerization with C20D3-vitamin A mitigates pathological changes observed in the prodromal phase of the most prevalent retinal degenerative diseases, including fundus autofluorescence changes, dark adaptation delays, and signature RPE atrophic changes. Conclusions Data demonstrate that the dimerization of vitamin A during the vitamin A cycle is sufficient alone to cause the prerequisite RPE atrophic changes thought to be responsible for the leading causes of irreversible blindness and that correcting the dimerization rate with C20D3-vitamin A may be sufficient to prevent the RPE atrophic changes. Translational Relevance Preventing the dimerization of vitamin A with the vitamin A analog C20D3-vitamin A may be sufficient to alter the clinical course of the most prevalent forms of blindness, including Stargardt disease and age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY, USA
| | - Kiera Robinson
- Columbia University Medical Center, Ophthalmology, New York, NY, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY, USA.,biOOrg3.14, Buffalo, WY, USA
| |
Collapse
|
7
|
Zhang D, Mihai DM, Washington I. Vitamin A cycle byproducts explain retinal damage and molecular changes thought to initiate retinal degeneration. Biol Open 2021; 10:273577. [PMID: 34842275 PMCID: PMC8649638 DOI: 10.1242/bio.058600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
In the most prevalent retinal diseases, including Stargardt disease and age-related macular degeneration (AMD), byproducts of vitamin A form in the retina abnormally during the vitamin A cycle. Despite evidence of their toxicity, whether these vitamin A cycle byproducts contribute to retinal disease, are symptoms, beneficial, or benign has been debated. We delivered a representative vitamin A byproduct, A2E, to the rat's retina and monitored electrophysiological, histological, proteomic, and transcriptomic changes. We show that the vitamin A cycle byproduct is sufficient alone to damage the RPE, photoreceptor inner and outer segments, and the outer plexiform layer, cause the formation of sub-retinal debris, alter transcription and protein synthesis, and diminish retinal function. The presented data are consistent with the theory that the formation of vitamin A byproducts during the vitamin A cycle is neither benign nor beneficial but may be sufficient alone to cause the most prevalent forms of retinal disease. Retarding the formation of vitamin A byproducts could potentially address the root cause of several retinal diseases to eliminate the threat of irreversible blindness for millions of people. Summary: During the vitamin A cycle, byproducts of vitamin A form in the eye. Using a rat model, we show that the byproducts alone can explain several retinal derangements observed in the prodromal phase of human retinal disease. Retarding the formation of these byproducts may address the root cause of the most prevalent retinal diseases.
Collapse
Affiliation(s)
- Dan Zhang
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Doina M Mihai
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA
| | - Ilyas Washington
- Columbia University Medical Center, Ophthalmology, New York, NY 10032, USA.,biOOrg3.14, Buffalo, WY 82834, USA
| |
Collapse
|
8
|
Vitamin A cycle byproducts impede dark adaptation. J Biol Chem 2021; 297:101074. [PMID: 34391781 PMCID: PMC8427233 DOI: 10.1016/j.jbc.2021.101074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
Impaired dark adaptation (DA), a defect in the ability to adjust to dimly lit settings, is a universal hallmark of aging. However, the mechanisms responsible for impaired DA are poorly understood. Vitamin A byproducts, such as vitamin A dimers, are small molecules that form in the retina during the vitamin A cycle. We show that later in life, in the human eye, these byproducts reach levels commensurate with those of vitamin A. In mice, selectively inhibiting the formation of these byproducts, with the investigational drug C20D3-vitamin A, results in faster DA. In contrast, acutely increasing these ocular byproducts through exogenous delivery leads to slower DA, with otherwise preserved retinal function and morphology. Our findings reveal that vitamin A cycle byproducts alone are sufficient to cause delays in DA and suggest that they may contribute to universal age-related DA impairment. Our data further indicate that the age-related decline in DA may be tractable to pharmacological intervention by C20D3-vitamin A.
Collapse
|
9
|
Călin EF, Patoni Popescu SI, Coman Cernat CC, Patoni C, Popescu MN, Mușat O. Lipofuscin: a key compound in ophthalmic practice. Rom J Ophthalmol 2021; 65:109-113. [PMID: 34179573 PMCID: PMC8207864 DOI: 10.22336/rjo.2021.23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lipofuscin is an intracellular aging pigment with fluorescent properties, found in retinal pigment epithelium cells of the eye. It is the main fluorophore used in fundus autofluorescence imaging techniques to diagnose, describe, and follow retinal disease. Lipofuscin forms by incomplete lysosomal degradation of cellular material previously subjected to oxidative changes. A2E is the most studied fluorescent component of lipofuscin, but most of its composition remains unknown. Lipofuscin is photoreactive, generating reactive oxygen species, which may explain its role in disease development. Further knowledge is needed concerning lipofuscin genesis, biochemical composition, fluorescent compounds, and role in pathogenesis of retinal degenerative disease.
Collapse
Affiliation(s)
- Edward Florian Călin
- Department of Ophthalmology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | | | - Corina Cristina Coman Cernat
- Department of Ophthalmology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania.,"Victor Babeş" University of Medicine and Pharmacy, Timișoara, Romania
| | - Cristina Patoni
- Department of Gastroenterology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| | | | - Ovidiu Mușat
- Department of Ophthalmology, "Dr. Carol Davila" Central Military Emergency University Hospital, Bucharest, Romania
| |
Collapse
|
10
|
Różanowska MB, Pawlak A, Różanowski B. Products of Docosahexaenoate Oxidation as Contributors to Photosensitising Properties of Retinal Lipofuscin. Int J Mol Sci 2021; 22:ijms22073525. [PMID: 33805370 PMCID: PMC8037991 DOI: 10.3390/ijms22073525] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Retinal lipofuscin which accumulates with age in the retinal pigment epithelium (RPE) is subjected to daily exposures to high fluxes of visible light and exhibits potent photosensitising properties; however, the molecules responsible for its photoreactivity remain unknown. Here, we demonstrate that autooxidation of docosahexaenoate (DHE) leads to the formation of products absorbing, in addition to UVB and UVA light, also visible light. The products of DHE oxidation exhibit potent photosensitising properties similar to photosensitising properties of lipofuscin, including generation of an excited triplet state with similar characteristics as the lipofuscin triplet state, and photosensitised formation of singlet oxygen and superoxide. The quantum yields of singlet oxygen and superoxide generation by oxidised DHE photoexcited with visible light are 2.4- and 3.6-fold higher, respectively, than for lipofuscin, which is consistent with the fact that lipofuscin contains some chromophores which do contribute to the absorption of light but not so much to its photosensitising properties. Importantly, the wavelength dependence of photooxidation induced by DHE oxidation products normalised to equal numbers of incident photons is also similar to that of lipofuscin—it steeply increases with decreasing wavelength. Altogether, our results demonstrate that products of DHE oxidation include potent photosensitiser(s) which are likely to contribute to lipofuscin photoreactivity.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Cardiff Institute for Tissue Engineering and Repair (CITER), Cardiff University, Cardiff CF24 4HQ, Wales, UK
- Correspondence: ; Tel.: +44-292087-5057
| | - Anna Pawlak
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland;
| | | |
Collapse
|
11
|
El Sayed AM, Basam SM, El-Naggar EMBA, Marzouk HS, El-Hawary S. LC-MS/MS and GC-MS profiling as well as the antimicrobial effect of leaves of selected Yucca species introduced to Egypt. Sci Rep 2020; 10:17778. [PMID: 33082381 PMCID: PMC7575531 DOI: 10.1038/s41598-020-74440-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/21/2020] [Indexed: 11/30/2022] Open
Abstract
Few studies thoroughly investigated different Yucca species introduced to Egypt. As a part of our ongoing investigation of the Yucca species; Yucca aloifolia and its variety Yucca aloifolia variegata, Yucca filamentosa, and Yucca elephantipes (Asparagaceae) were extensively subjected to phytochemical and antimicrobial investigation. Yucca species cultivated in Egypt showed no antimicrobial effect. GC/MS of the lipoid contents of Y. aloifolia variegata was carried out. Twenty-six fatty acids were identified. Saturated fatty acids established almost twice the unsaturated ones and constituted 64.64% of which palmitic acid and palmitoleic acid signifying 58.28% and 30.98%, respectively. Hydrocarbons were 21 constituting 39.64% of the unsaponifiable fraction. Only three sterols 42.36% were detected, major was γ-sitosterol. LC–MS/MS comparison of the 4 plant extracts imply that Y.aloifolia variegata L extract was the richest, which was apparent through its superior biological activity. LC–MS/MS analysis of the total alcoholic extract (Alc) of the leaves of Y.aloifolia variegata L. was performed using MS-techniques at different voltages; equal to 35 and 135 eV. Negative and positive-ion modes analyses at low fragmentation energy allowed the tentative identification of 41 and 34 compounds, respectively. The LC–ESI–MS/MS analysis in the positive mode proved to be better in the identification of saponins.
Collapse
Affiliation(s)
- Abeer M El Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El Aini, P.O. Box 11562, Cairo, Egypt.
| | - Samar M Basam
- Department of Pharmacognosy, Pharos University in Alexandria, Alexandria, Egypt
| | | | - Hanan S Marzouk
- Department of Pharmacognosy, Pharos University in Alexandria, Alexandria, Egypt
| | - Seham El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El Aini, P.O. Box 11562, Cairo, Egypt
| |
Collapse
|
12
|
Kotnala A, Senthilkumari S, Halder N, Kumar A, Velpandian T. Microwave assisted synthesis for A2E and development of LC-ESI-MS method for quantification of ocular bisretinoids in human retina. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1073:10-18. [PMID: 29232606 DOI: 10.1016/j.jchromb.2017.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE To develop a microwave assisted method for the rapid synthesis of A2E and also to develop a method to quantify N-retinylidene-N-retinylethanolamine(A2E), all-trans retinal dimer (ATRD), A2-glycerophospho ethanolamine (A2GPE), dihydropyridine phosphatidyl ethanolamine (A2DHPE) and monofuran A2E (MFA2E) in age matched retina. METHODS The development of microwave assisted synthesis of A2E, its purification and characterization for its utility in quantification in human retina. The semi-quantitative method development using LC-ESI-MS, LC-ESI-MS/MS and LC-APCI-MS/MS from pooled macula and peripheral retina for the bisretinoid analysis has been done. RESULTS Maximum A2E conversion using microwave assisted process took place at 80°C for 45min with a yield of 55.01%. Highly sensitive and specific mass spectrometric method was developed using reverse phase C-18 separation with positive electrospray ionization and positive atmospheric phase chemical ionization of tandom mass spectrometry. A gradient mobile phase separation was achieved using water and methanol with 0.1% TFA. Multiple reaction monitoring acquisition for ESI and APCI was performed at ATRD m/z 551.2/522.2, A2GPE m/z 746.4/729.5, A2DHPEm/z 594.4/576.5, MFA2E m/z 608.2/591.2, A2E m/z 592.4/418.2. Method was validated using LC-ESI-SIM mode to determine selectivity, linearity, sensitivity, precision and accuracy. CONCLUSION An attempt towards optimization of the synthetic procedure of A2E was made so as to reduce the lengthy reaction time without compromising the yield. Developed method was capable enough for the detection of low level of bisretinids in retina.
Collapse
Affiliation(s)
- A Kotnala
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - S Senthilkumari
- Department of Ocular Pharmacology, Aravind Medical Research Foundation, Madurai, Tamilnadu, India
| | - N Halder
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - A Kumar
- Department of Ophthalmology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - T Velpandian
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
13
|
Involvement of Nrf2 in Ocular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1703810. [PMID: 28473877 PMCID: PMC5394909 DOI: 10.1155/2017/1703810] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/14/2017] [Indexed: 12/15/2022]
Abstract
The human body harbors within it an intricate and delicate balance between oxidants and antioxidants. Any disruption in this checks-and-balances system can lead to harmful consequences in various organs and tissues, such as the eye. This review focuses on the effects of oxidative stress and the role of a particular antioxidant system—the Keap1-Nrf2-ARE pathway—on ocular diseases, specifically age-related macular degeneration, cataracts, diabetic retinopathy, and glaucoma. Together, they are the major causes of blindness in the world.
Collapse
|
14
|
Yakovleva MA, Gulin AA, Feldman TB, Bel’skich YC, Arbukhanova PM, Astaf’ev AA, Nadtochenko VA, Borzenok SA, Ostrovsky MA. Time-of-flight secondary ion mass spectrometry to assess spatial distribution of A2E and its oxidized forms within lipofuscin granules isolated from human retinal pigment epithelium. Anal Bioanal Chem 2016; 408:7521-8. [DOI: 10.1007/s00216-016-9854-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/24/2016] [Accepted: 08/01/2016] [Indexed: 11/25/2022]
|
15
|
Johansson I, Monsen VT, Pettersen K, Mildenberger J, Misund K, Kaarniranta K, Schønberg S, Bjørkøy G. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. Autophagy 2016; 11:1636-51. [PMID: 26237736 PMCID: PMC4590664 DOI: 10.1080/15548627.2015.1061170] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Accumulation and aggregation of misfolded proteins is a hallmark of several diseases collectively known as proteinopathies. Autophagy has a cytoprotective role in diseases associated with protein aggregates. Age-related macular degeneration (AMD) is the most common neurodegenerative eye disease that evokes blindness in elderly. AMD is characterized by degeneration of retinal pigment epithelial (RPE) cells and leads to loss of photoreceptor cells and central vision. The initial phase associates with accumulation of intracellular lipofuscin and extracellular deposits called drusen. Epidemiological studies have suggested an inverse correlation between dietary intake of marine n-3 polyunsaturated fatty acids (PUFAs) and the risk of developing neurodegenerative diseases, including AMD. However, the disease-preventive mechanism(s) mobilized by n-3 PUFAs is not completely understood. In human retinal pigment epithelial cells we find that physiologically relevant doses of the n-3 PUFA docosahexaenoic acid (DHA) induce a transient increase in cellular reactive oxygen species (ROS) levels that activates the oxidative stress response regulator NFE2L2/NRF2 (nuclear factor, erythroid derived 2, like 2). Simultaneously, there is a transient increase in intracellular protein aggregates containing SQSTM1/p62 (sequestosome 1) and an increase in autophagy. Pretreatment with DHA rescues the cells from cell cycle arrest induced by misfolded proteins or oxidative stress. Cells with a downregulated oxidative stress response, or autophagy, respond with reduced cell growth and survival after DHA supplementation. These results suggest that DHA both induces endogenous antioxidants and mobilizes selective autophagy of misfolded proteins. Both mechanisms could be relevant to reduce the risk of developing aggregate-associate diseases such as AMD.
Collapse
Affiliation(s)
- Ida Johansson
- a Department of Laboratory Medicine ; Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway.,b Department of Technology ; University College of Sør-Trøndelag ; Trondheim , Norway.,c Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine ; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Vivi Talstad Monsen
- a Department of Laboratory Medicine ; Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Kristine Pettersen
- a Department of Laboratory Medicine ; Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway.,b Department of Technology ; University College of Sør-Trøndelag ; Trondheim , Norway.,c Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine ; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Jennifer Mildenberger
- b Department of Technology ; University College of Sør-Trøndelag ; Trondheim , Norway.,c Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine ; Norwegian University of Science and Technology ; Trondheim , Norway.,d Department of Cancer Research and Molecular Medicine ; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Kristine Misund
- d Department of Cancer Research and Molecular Medicine ; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway.,e KG Jebsen Center for Myeloma Research; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Kai Kaarniranta
- f Department of Ophthalmology ; Institute of Clinical Medicine; University of Eastern Finland ; Kuopio , Finland.,g Department of Ophthalmology ; Kuopio University Hospital ; Kuopio , Finland
| | - Svanhild Schønberg
- a Department of Laboratory Medicine ; Children's and Women's Health; Faculty of Medicine; Norwegian University of Science and Technology ; Trondheim , Norway
| | - Geir Bjørkøy
- b Department of Technology ; University College of Sør-Trøndelag ; Trondheim , Norway.,c Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine ; Norwegian University of Science and Technology ; Trondheim , Norway
| |
Collapse
|
16
|
Sparrow JR, Duncker T. Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration. J Clin Med 2015; 3:1302-21. [PMID: 25774313 PMCID: PMC4358814 DOI: 10.3390/jcm3041302] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genes that increase susceptibility to age-related macular degeneration (AMD) have been identified; however, since many individuals carrying these risk alleles do not develop disease, other contributors are involved. One additional factor, long implicated in the pathogenesis of AMD, is the lipofuscin of retinal pigment epithelium (RPE). The fluorophores that constitute RPE lipofuscin also serve as a source of autofluorescence (AF) that can be imaged by confocal laser ophthalmoscopy. The AF originating from lipofuscin is excited by the delivery of short wavelength (SW) light. A second autofluorescence is emitted from the melanin of RPE (and choroid) upon near-infrared (NIR-AF) excitation. SW-AF imaging is currently used in the clinical management of retinal disorders and the advantages of NIR-AF are increasingly recognized. Here we visit the damaging properties of RPE lipofuscin that could be significant when expressed on a background of genetic susceptibility. To advance interpretations of disease-related patterns of fundus AF in AMD, we also consider the photochemical and spectrophotometric features of the lipofuscin compounds responsible for generating the fluorescence emission.
Collapse
Affiliation(s)
- Janet R. Sparrow
- Department of Ophthalmology, Columbia University Medical Center, 635 W. 165th Street, New York, NY 10032, USA; E-Mail:
- Department of Pathology and Cell Biology, Columbia University Medical Center, 630 168th Street, New York, NY 10032, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-305-0044
| | - Tobias Duncker
- Department of Ophthalmology, Columbia University Medical Center, 635 W. 165th Street, New York, NY 10032, USA; E-Mail:
| |
Collapse
|
17
|
Tolentino MJ, Dennrick A, John E, Tolentino MS. Drugs in Phase II clinical trials for the treatment of age-related macular degeneration. Expert Opin Investig Drugs 2014; 24:183-99. [PMID: 25243494 DOI: 10.1517/13543784.2015.961601] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The clinical development of anti-VEGF therapies for the treatment of exudative age-related macular degeneration (wet AMD) has revolutionized ophthalmology. Indeed, it has provided clinicians and patients with treatments that lessen visual loss from in a disease that once was uniformly blinding. Although blindness is yet to be eradicated from AMD, repeated intraocular anti-VEGF injections are required to preserve a patient's vision. Therefore, further advances in this field are necessary. AREAS COVERED This review provides an overview of the agents that are in mid-stage phase trials for both exudative (wet AMD) and nonexudative macular degeneration (dry AMD). For wet AMD, new agents intend to enhance efficacy, develop alternative delivery such as eye drops, investigate alternate targets and construct sustained release strategies. For advanced dry AMD, the goal is to develop a strategy to slow or stop progressive loss of retinal tissue seen in geographic atrophy, the hallmark of advanced dry AMD. EXPERT OPINION It is important to develop better more sensitive biomarkers, validating different approvable clinical trial endpoints and stratifying patients on their genetic polymorphisms. These developments should help to progress the already rapidly developing field of macular degeneration therapy.
Collapse
Affiliation(s)
- Michael John Tolentino
- University of Central Florida, College of Medicine , 6850 Lake Nona Blvd. Orlando, FL 32827 , USA
| | | | | | | |
Collapse
|
18
|
Nowak JZ. Oxidative stress, polyunsaturated fatty acids-derived oxidation products and bisretinoids as potential inducers of CNS diseases: focus on age-related macular degeneration. Pharmacol Rep 2014; 65:288-304. [PMID: 23744414 DOI: 10.1016/s1734-1140(13)71005-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/31/2013] [Indexed: 12/12/2022]
Abstract
Many pathologies of the central nervous system (CNS) originate from excess of reactive free radicals, notably reactive oxygen species (ROS), and oxidative stress. A phenomenon which usually runs in parallel with oxidative stress is unsaturated lipid peroxidation, which, via a chain reaction, contributes to the progression of disbalanced redox homeostasis. Among long-chain (LC) polyunsaturated fatty acids (PUFAs) abundantly occurring in the CNS, docosahexaenoic acid (DHA), a member of ω-3 LC-PUFAs, deserves special attention, as it is avidly retained and uniquely concentrated in the nervous system, particularly in retinal photoreceptors and synaptic membranes; owing to the presence of the six double bonds between carbon atoms in its polyene chain (C=C), DHA is exquisitely sensitive to oxidative damage. In addition to oxidative stress and LC-PUFAs peroxidation, other stress-related mechanisms may also contribute to the development of various CNS malfunctions, and a good example of such mechanisms is the process of lipofuscin formation occurring particularly in the retina, an integral part of the CNS. The retinal lipofuscin is formed and accumulated by the retinal pigment epithelial (RPE) cells as a consequence of both visual process taking place in photoreceptor-RPE functional complex and metabolic insufficiency of RPE lysosomal compartment. Among various retinal lipofuscin constituents, bisretinoids, originating from all-trans retinal substrate--a photometabolite of visual pigment cofactor 11-cis-retinal (responsible for photon capturing), are endowed with cytotoxic and complement-activating potential which increases upon illumination and oxidation. This survey deals with oxidative stress, PUFAs (especially DHA) peroxidation products of carboxyalkylpyrrole type and bisretinoids as potential inducers of the CNS pathology. A focus is put on vision-threatening disease, i.e., age-related macular degeneration (AMD), as an example of the CNS disorder whose pathogenesis has strong background in both oxidative stress and lipid peroxidation products.
Collapse
Affiliation(s)
- Jerzy Z Nowak
- Institute of Pharmacology, Polish Academy of Sciences, Scientific Board, Smętna 12, PL 31-343 Kraków, Poland.
| |
Collapse
|
19
|
Ablonczy Z, Higbee D, Anderson DM, Dahrouj M, Grey AC, Gutierrez D, Koutalos Y, Schey KL, Hanneken A, Crouch RK. Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 2013; 54:5535-42. [PMID: 23847313 DOI: 10.1167/iovs.13-12250] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The accumulation of lipofuscin in the RPE is a hallmark of aging in the eye. The best characterized component of lipofuscin is A2E, a bis-retinoid byproduct of the normal retinoid visual cycle, which exhibits a broad spectrum of cytotoxic effects in vitro. The purpose of our study was to correlate the distribution of lipofuscin and A2E across the human RPE. METHODS Lipofuscin fluorescence was imaged in flat-mounted RPE from human donors of various ages. The spatial distributions of A2E and its oxides were determined using matrix-assisted laser desorption-ionization imaging mass spectrometry (MALDI-IMS) on flat-mounted RPE tissue sections and retinal cross-sections. RESULTS Our data support the clinical observations of strong RPE fluorescence, increasing with age, in the central area of the RPE. However, there was no correlation between the distribution of A2E and lipofuscin, as the levels of A2E were highest in the far periphery and decreased toward the central region. High-resolution MALDI-IMS of retinal cross-sections confirmed the A2E localization data obtained in RPE flat-mounts. Singly- and doubly-oxidized A2E had distributions similar to A2E, but represented <10% of the A2E levels. CONCLUSIONS This report to our knowledge is the first description of the spatial distribution of A2E in the human RPE by imaging mass spectrometry. These data demonstrate that the accumulation of A2E is not responsible for the increase in lipofuscin fluorescence observed in the central RPE with aging.
Collapse
Affiliation(s)
- Zsolt Ablonczy
- Department of Ophthalmology, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Różanowska M, Handzel K, Boulton ME, Różanowski B. Cytotoxicity of all-trans-retinal increases upon photodegradation. Photochem Photobiol 2012; 88:1362-72. [PMID: 22515697 PMCID: PMC3644973 DOI: 10.1111/j.1751-1097.2012.01161.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
All-trans-retinal (AtRal) can accumulate in the retina as a result of excessive exposure to light. The purpose of this study was to compare cytotoxicity of AtRal and photodegraded AtRal (dAtRal) on cultured human retinal pigment epithelial cells in dark and upon exposure to visible light. AtRal was degraded by exposure to visible light. Cytotoxicity was monitored by imaging of cell morphology, propidium iodide staining of cells with permeable plasma membrane and measurements of reductive activity of cells. Generation of singlet oxygen photosensitized by AtRal and dAtRal was monitored by time-resolved measurements of characteristic singlet oxygen phosphorescence. Photodegradation of AtRal resulted in a decrease in absorption of visible light and accumulation of the degradation products with absorption maximum at ∼330 nm. Toxicity of dAtRal was concentration-dependent and was greater during irradiation with visible light than in dark. DAtRal was more cytotoxic than AtRal both in dark and during exposure to visible light. Photochemical properties of dAtRal indicate that it may be responsible for the maximum in the action spectra of retinal photodamage recorded in animals. In conclusion, photodegradation products of AtRal may impose a significant threat to the retina and therefore their roles in retinal pathology need to be explored.
Collapse
Affiliation(s)
- Małgorzata Różanowska
- School of Optometry and Vision Sciences, Cardiff University, Maindy Road, Cardiff, Wales, UK.
| | | | | | | |
Collapse
|
21
|
Abstract
Accumulation of all-trans-retinal (all-trans-RAL), reactive vitamin A aldehyde, is one of the key factors in initiating retinal photodamage. This photodamage is characterized by progressive retinal cell death evoked by light exposure in both an acute and chronic fashion. Photoactivated rhodopsin releases all-trans-RAL, which is subsequently transported by ATP-binding cassette transporter 4 and reduced to all-trans-retinol by all-trans-retinol dehydrogenases located in photoreceptor cells. Any interruptions in the clearing of all-trans-RAL in the photoreceptors can cause an accumulation of this reactive aldehyde and its toxic condensation products. This accumulation may result in the manifestation of retinal dystrophy including human retinal degenerative diseases such as Stargardt's disease and age-related macular degeneration. Herein, we discuss the mechanisms of all-trans-RAL clearance in photoreceptor cells by sequential enzymatic reactions, the visual (retinoid) cycle, and potential molecular pathways of retinal photodamage. We also review recent imaging technologies to monitor retinal health status as well as novel therapeutic strategies preventing all-trans-RAL-associated retinal photodamage.
Collapse
Affiliation(s)
- Tadao Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | | |
Collapse
|