1
|
Ghosh G, Shannon AE, Searle BC. Data acquisition approaches for single cell proteomics. Proteomics 2025; 25:e2400022. [PMID: 39088833 PMCID: PMC11735665 DOI: 10.1002/pmic.202400022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/03/2024]
Abstract
Single-cell proteomics (SCP) aims to characterize the proteome of individual cells, providing insights into complex biological systems. It reveals subtle differences in distinct cellular populations that bulk proteome analysis may overlook, which is essential for understanding disease mechanisms and developing targeted therapies. Mass spectrometry (MS) methods in SCP allow the identification and quantification of thousands of proteins from individual cells. Two major challenges in SCP are the limited material in single-cell samples necessitating highly sensitive analytical techniques and the efficient processing of samples, as each biological sample requires thousands of single cell measurements. This review discusses MS advancements to mitigate these challenges using data-dependent acquisition (DDA) and data-independent acquisition (DIA). Additionally, we examine the use of short liquid chromatography gradients and sample multiplexing methods that increase the sample throughput and scalability of SCP experiments. We believe these methods will pave the way for improving our understanding of cellular heterogeneity and its implications for systems biology.
Collapse
Affiliation(s)
- Gautam Ghosh
- Ohio State Biochemistry ProgramThe Ohio State UniversityColumbusOhioUSA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
| | - Ariana E. Shannon
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
- Department of Biomedical InformaticsThe Ohio State University Medical CenterColumbusOhioUSA
| | - Brian C. Searle
- Ohio State Biochemistry ProgramThe Ohio State UniversityColumbusOhioUSA
- Pelotonia Institute for Immuno‐OncologyThe Ohio State University Comprehensive Cancer CenterColumbusOhioUSA
- Department of Biomedical InformaticsThe Ohio State University Medical CenterColumbusOhioUSA
| |
Collapse
|
2
|
Searle BC. Characterizing protein-protein interactions with thermal proteome profiling. Curr Opin Struct Biol 2024; 89:102946. [PMID: 39481280 PMCID: PMC11602378 DOI: 10.1016/j.sbi.2024.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Thermal proteome profiling (TPP) is an innovative technique that uses the principle of protein thermal stability to identify potential protein interaction partners. Employing quantitative mass spectrometry, TPP measures protein stability across the proteome, offering a comprehensive snapshot of protein interactions in a single experiment. When studying protein-protein interactions (PPI), TPP leverages changes in apparent protein melting temperatures to identify transient and weak interactions that most traditional PPI detection methodologies struggle to measure. This review discusses current TPP methodologies, the challenges of interpreting the resulting complex datasets, and opportunities to deepen and improve PPI networks. By advancing our grasp of intricate protein interactions, TPP promises to illuminate the molecular basis of diseases and drive the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Brian C Searle
- Department of Biomedical Informatics, The Ohio State University Medical Center, Columbus, OH, 43210, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Armbruster MR, Grady SF, Cho K, Patti GJ, Bythell BJ, Arnatt CK, Edwards JL. High-Throughput Metabolomics using 96-plex Isotope Tagging. Anal Chem 2024; 96:12937-12942. [PMID: 39082755 DOI: 10.1021/acs.analchem.4c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) based metabolomics suffers from extended duty cycles and matrix-dependent quantitation. Chemical tags with 96 unique masses are reported, which alleviate the metabolomic workflow bottleneck and allow for absolute quantitation. A metabolic screen for carboxylic acids was performed on mammalian cells deprived of various nutrients and showed 24% RSD and analysis of 288 samples in 2 h.
Collapse
Affiliation(s)
- Michael R Armbruster
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| | - Scott F Grady
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Dr Rm 102, St. Louis, Missouri 63110, United States
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, 1 Brookings Dr Rm 102, St. Louis, Missouri 63110, United States
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
| | - Christopher K Arnatt
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| | - James L Edwards
- Department of Chemistry and Biochemistry, Saint Louis University, 3501 Laclede Ave, St. Louis, Missouri 63103, United States
| |
Collapse
|
4
|
Navarrete-Perea J, Li J, Mitchell DC, Chi A. Synthetic Knockout Protein Standard for Evaluating Interference in Tandem Mass Tag-Based Proteomics. Anal Chem 2024; 96:6836-6846. [PMID: 38640495 DOI: 10.1021/acs.analchem.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Isobaric labeling is widely used for unbiased, proteome-wide studies, and it provides several advantages, such as fewer missing values among samples and higher quantitative precision. However, ion interference may lead to compressed or distorted observed ratios due to the coelution and coanalysis of peptides. Here, we introduced a synthetic KnockOut standard (sKO) for evaluating interference in tandem mass tags-based proteomics. sKO is made by mixing TMTpro-labeled tryptic peptides derived from four nonhuman proteins and a whole human proteome as background at different proportions. We showcased the utility of the sKO standard by exploring ion interference at different peptide concentrations (up to a 30-fold change in abundance) and using a variety of mass spectrometer data acquisition strategies. We also demonstrated that the sKO standard could provide valuable information for the rational design of acquisition strategies to achieve optimal data quality and discussed its potential applications for high-throughput proteomics workflows development.
Collapse
Affiliation(s)
| | - Jiaming Li
- Merck & Co., Inc., Cambridge, Massachusetts 02115, United States
| | | | - An Chi
- Merck & Co., Inc., Cambridge, Massachusetts 02115, United States
| |
Collapse
|
5
|
Han Y, Wennersten SA, Pandi BP, Ng DCM, Lau E, Lam MPY. A Ratiometric Catalog of Protein Isoform Shifts in the Cardiac Fetal Gene Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588716. [PMID: 38645170 PMCID: PMC11030362 DOI: 10.1101/2024.04.09.588716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The fetal genetic program orchestrates cardiac development and the re-expression of fetal genes is thought to underlie cardiac disease and adaptation. Here, a proteomics ratio test using mass spectrometry is applied to find protein isoforms with statistically significant usage differences in the fetal vs. postnatal mouse heart. Changes in isoform usage ratios are pervasive at the protein level, with 104 significant events observed, including 88 paralog-derived isoform switching events and 16 splicing-derived isoform switching events between fetal and postnatal hearts. The ratiometric proteomic comparisons rediscovered hallmark fetal gene signatures including a postnatal switch from fetal β (MYH7) toward ɑ (MYH6) myosin heavy chains and from slow skeletal muscle (TNNI1) toward cardiac (TNNI3) troponin I. Altered usages in metabolic proteins are prominent, including a platelet to muscle phosphofructokinase (PFKP - PFKM), enolase 1 to 3 (ENO1 - ENO3), and alternative splicing of pyruvate kinase M2 toward M1 (PKM2 - PKM1) isoforms in glycolysis. The data also revealed a parallel change in mitochondrial proteins in cardiac development, suggesting the shift toward aerobic respiration involves also a remodeling of the mitochondrial protein isoform proportion. Finally, a number of glycolytic protein isoforms revert toward their fetal forms in adult hearts under pathological cardiac hypertrophy, suggesting their functional roles in adaptive or maladaptive response, but this reversal is partial. In summary, this work presents a catalog of ratiometric protein markers of the fetal genetic program of the mouse heart, including previously unreported splice isoform markers.
Collapse
Affiliation(s)
- Yu Han
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sara A Wennersten
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Boomathi P Pandi
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dominic C M Ng
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Edward Lau
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Maggie P Y Lam
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Consortium for Fibrosis Research and Translation, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Figueroa-Navedo AM, Ivanov AR. Experimental and data analysis advances in thermal proteome profiling. CELL REPORTS METHODS 2024; 4:100717. [PMID: 38412830 PMCID: PMC10921035 DOI: 10.1016/j.crmeth.2024.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024]
Abstract
Method development for mass spectrometry (MS)-based thermal shift proteomic assays have advanced to probe small molecules with known and unknown protein-ligand interaction mechanisms and specificity, which is predominantly used in characterization of drug-protein interactions. In the discovery of target and off-target protein-ligand interactions, a thorough investigation of method development and their impact on the sensitivity and accuracy of protein-small molecule and protein-protein interactions is warranted. In this review, we discuss areas of improvement at each stage of thermal proteome profiling data analysis that includes processing of MS-based data, method development, and their effect on the overall quality of thermal proteome profiles. We also overview the optimization of experimental strategies and prioritization of an increased number of independent biological replicates over the number of evaluated temperatures.
Collapse
Affiliation(s)
- Amanda M Figueroa-Navedo
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Madern M, Reiter W, Stanek F, Hartl N, Mechtler K, Hartl M. A Causal Model of Ion Interference Enables Assessment and Correction of Ratio Compression in Multiplex Proteomics. Mol Cell Proteomics 2024; 23:100694. [PMID: 38097181 PMCID: PMC10828822 DOI: 10.1016/j.mcpro.2023.100694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 01/29/2024] Open
Abstract
Multiplex proteomics using isobaric labeling tags has emerged as a powerful tool for the simultaneous relative quantification of peptides and proteins across multiple experimental conditions. However, the quantitative accuracy of the approach is largely compromised by ion interference, a phenomenon that causes fold changes to appear compressed. The degree of compression is generally unknown, and the contributing factors are poorly understood. In this study, we thoroughly characterized ion interference at the MS2 level using a defined two-proteome experimental system with known ground-truth. We discovered remarkably poor agreement between the apparent precursor purity in the isolation window and the actual level of observed reporter ion interference in MS2 scans-a discrepancy that we found resolved by considering cofragmentation of peptide ions hidden within the spectral "noise" of the MS1 isolation window. To address this issue, we developed a regression modeling strategy to accurately predict reporter ion interference in any dataset. Finally, we demonstrate the utility of our procedure for improved fold change estimation and unbiased PTM site-to-protein normalization. All computational tools and code required to apply this method to any MS2 TMT dataset are documented and freely available.
Collapse
Affiliation(s)
- Moritz Madern
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria; Department for Biochemistry and Cell Biology, Center for Molecular Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Wolfgang Reiter
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria; Department for Biochemistry and Cell Biology, Center for Molecular Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Florian Stanek
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Natascha Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Markus Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria; Department for Biochemistry and Cell Biology, Center for Molecular Biology, University of Vienna, Vienna Biocenter Campus (VBC), Vienna, Austria.
| |
Collapse
|
8
|
Sidhaye J, Trepte P, Sepke N, Novatchkova M, Schutzbier M, Dürnberger G, Mechtler K, Knoblich JA. Integrated transcriptome and proteome analysis reveals posttranscriptional regulation of ribosomal genes in human brain organoids. eLife 2023; 12:e85135. [PMID: 36989136 PMCID: PMC10059687 DOI: 10.7554/elife.85135] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
During development of the human cerebral cortex, multipotent neural progenitors generate excitatory neurons and glial cells. Investigations of the transcriptome and epigenome have revealed important gene regulatory networks underlying this crucial developmental event. However, the posttranscriptional control of gene expression and protein abundance during human corticogenesis remains poorly understood. We addressed this issue by using human telencephalic brain organoids grown using a dual reporter cell line to isolate neural progenitors and neurons and performed cell class and developmental stage-specific transcriptome and proteome analysis. Integrating the two datasets revealed modules of gene expression during human corticogenesis. Investigation of one such module uncovered mTOR-mediated regulation of translation of the 5'TOP element-enriched translation machinery in early progenitor cells. We show that in early progenitors partial inhibition of the translation of ribosomal genes prevents precocious translation of differentiation markers. Overall, our multiomics approach proposes novel posttranscriptional regulatory mechanisms crucial for the fidelity of cortical development.
Collapse
Affiliation(s)
- Jaydeep Sidhaye
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Philipp Trepte
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Natalie Sepke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Karl Mechtler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC)ViennaAustria
- Department of Neurology, Medical University of ViennaViennaAustria
| |
Collapse
|
9
|
Tsai CF, Wang YT, Hsu CC, Kitata RB, Chu RK, Velickovic M, Zhao R, Williams SM, Chrisler WB, Jorgensen ML, Moore RJ, Zhu Y, Rodland KD, Smith RD, Wasserfall CH, Shi T, Liu T. A streamlined tandem tip-based workflow for sensitive nanoscale phosphoproteomics. Commun Biol 2023; 6:70. [PMID: 36653408 PMCID: PMC9849344 DOI: 10.1038/s42003-022-04400-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Effective phosphoproteome of nanoscale sample analysis remains a daunting task, primarily due to significant sample loss associated with non-specific surface adsorption during enrichment of low stoichiometric phosphopeptide. We develop a tandem tip phosphoproteomics sample preparation method that is capable of sample cleanup and enrichment without additional sample transfer, and its integration with our recently developed SOP (Surfactant-assisted One-Pot sample preparation) and iBASIL (improved Boosting to Amplify Signal with Isobaric Labeling) approaches provides a streamlined workflow enabling sensitive, high-throughput nanoscale phosphoproteome measurements. This approach significantly reduces both sample loss and processing time, allowing the identification of >3000 (>9500) phosphopeptides from 1 (10) µg of cell lysate using the label-free method without a spectral library. It also enables precise quantification of ~600 phosphopeptides from 100 sorted cells (single-cell level input for the enriched phosphopeptides) and ~700 phosphopeptides from human spleen tissue voxels with a spatial resolution of 200 µm (equivalent to ~100 cells) in a high-throughput manner. The new workflow opens avenues for phosphoproteome profiling of mass-limited samples at the low nanogram level.
Collapse
Affiliation(s)
- Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Chuan-Chih Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Velickovic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marda L Jorgensen
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
10
|
Day NJ, Zhang T, Gaffrey MJ, Zhao R, Fillmore TL, Moore RJ, Rodney GG, Qian WJ. A deep redox proteome profiling workflow and its application to skeletal muscle of a Duchenne Muscular Dystrophy model. Free Radic Biol Med 2022; 193:373-384. [PMID: 36306991 PMCID: PMC10072164 DOI: 10.1016/j.freeradbiomed.2022.10.300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Perturbation to the redox state accompanies many diseases and its effects are viewed through oxidation of biomolecules, including proteins, lipids, and nucleic acids. The thiol groups of protein cysteine residues undergo an array of redox post-translational modifications (PTMs) that are important for regulation of protein and pathway function. To better understand what proteins are redox regulated following a perturbation, it is important to be able to comprehensively profile protein thiol oxidation at the proteome level. Herein, we report a deep redox proteome profiling workflow and demonstrate its application in measuring the changes in thiol oxidation along with global protein expression in skeletal muscle from mdx mice, a model of Duchenne Muscular Dystrophy (DMD). In-depth coverage of the thiol proteome was achieved with >18,000 Cys sites from 5,608 proteins in muscle being quantified. Compared to the control group, mdx mice exhibit markedly increased thiol oxidation, where a ∼2% shift in the median oxidation occupancy was observed. Pathway analysis for the redox data revealed that coagulation system and immune-related pathways were among the most susceptible to increased thiol oxidation in mdx mice, whereas protein abundance changes were more enriched in pathways associated with bioenergetics. This study illustrates the importance of deep redox profiling in gaining greater insight into oxidative stress regulation and pathways/processes that are perturbed in an oxidizing environment.
Collapse
Affiliation(s)
- Nicholas J Day
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
11
|
Stoichiometric Thiol Redox Proteomics for Quantifying Cellular Responses to Perturbations. Antioxidants (Basel) 2021; 10:antiox10030499. [PMID: 33807006 PMCID: PMC8004825 DOI: 10.3390/antiox10030499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Post-translational modifications regulate the structure and function of proteins that can result in changes to the activity of different pathways. These include modifications altering the redox state of thiol groups on protein cysteine residues, which are sensitive to oxidative environments. While mass spectrometry has advanced the identification of protein thiol modifications and expanded our knowledge of redox-sensitive pathways, the quantitative aspect of this technique is critical for the field of redox proteomics. In this review, we describe how mass spectrometry-based redox proteomics has enabled researchers to accurately quantify the stoichiometry of reversible oxidative modifications on specific cysteine residues of proteins. We will describe advancements in the methodology that allow for the absolute quantitation of thiol modifications, as well as recent reports that have implemented this approach. We will also highlight the significance and application of such measurements and why they are informative for the field of redox biology.
Collapse
|