1
|
Paiva AC, Teixeira CA, Hantao LW. Exploring accurate mass measurements in pixel-based chemometrics: Advancing coffee classification with GC-HRMS-A proof of concept study. J Chromatogr A 2024; 1731:465171. [PMID: 39059306 DOI: 10.1016/j.chroma.2024.465171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
This paper presents a study that assesses the application of chemometrics for classifying coffee samples in a quality control context. High-resolution and accurate mass measurements were utilized as input for pixel-based orthogonal partial least squares discriminant analysis (OPLS-DA) models. The compositional data were acquired through a fully automated workflow combining headspace solid-phase microextraction and gas chromatography-high-resolution mass spectrometry (GC-HRMS) using an FT-Orbitrap® mass analyzer. A workflow centered on accurate mass measurements was successfully utilized for group-type analysis, offering an alternative to methods relying solely on MS similarity searches. The predictive models underwent thorough evaluation, demonstrating robust multivariate classification performance. Five key coffee attributes, bitterness, acidity, body, intensity, and roasting level were successfully predicted using GC-HRMS data. The results revealed strong predictive accuracy across all models, ranging from 88.9 % (bitterness) to 94.4 % (roasting level). This study represents a significant advancement in automating methods for coffee quality control, notably increasing the predictive ability of the models compared to existing literature.
Collapse
Affiliation(s)
- Andre Cunha Paiva
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, SP 13083-862, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), SP, Campinas, 13083-862 Brazil
| | - Carlos Alberto Teixeira
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, SP 13083-862, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), SP, Campinas, 13083-862 Brazil
| | - Leandro Wang Hantao
- Institute of Chemistry, University of Campinas, 270 Monteiro Lobato, Campinas, SP 13083-862, Brazil; National Institute of Science and Technology in Bioanalytics (INCTBio), SP, Campinas, 13083-862 Brazil.
| |
Collapse
|
2
|
Li Y, Lian R, Sheng Z, Mao J, Mao C, Liang C, Zhang P, Ni C, Wang R, Zhang Y. Automatic MDSPE Combined with DART-HRMS for the Rapid Quantitation of 21 Synthetic Cathinones in Urine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:40-49. [PMID: 38109269 DOI: 10.1021/jasms.3c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
A new, rapid, and automated method for the quantitation of 21 synthetic cathinones in urine was established using magnetic dispersive solid-phase extraction (MDSPE) in combination with direct analysis in real time-high-resolution mass spectrometry (DART-HRMS). Sample preparation and quantitation were verified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Methcathinone-D3, α-PVP-D8, and proadifen (SKF525A) were used as internal standards. Magnetic HLB extractant and NaH2PO4/NaOH buffer (0.2 M, pH 7) were used in automatic MDSPE. All 21 synthetic cathinones could be detected and analyzed by DART-HRMS in under 1 min. It was proven that the linearities of 21 synthetic cathinones were suitable (R2 > 0.99) in the concentration ranges of 0.5-100 ng/mL or 1-100 ng/mL. The precision and accuracy values were all within ±15%, and the samples were stable under various conditions. The average time of each sample from preprocessing to completion of detection was approximately 2 min, allowing for rapid sample analysis. The relative error (RE) of the concentrations obtained by DART-HRMS and LC-MS/MS were within ±13.61%, and the linear coefficient (R) was 0.9964. The results of DART-HRMS and LC-MS/MS provided equivalent values at the 95% confidence level. In summary, a simple, fast, and convenient quantitation method via DART-HRMS was established. This application can be utilized to reduce backlogs and promote rapid case processing.
Collapse
Affiliation(s)
- Yawen Li
- China State Institute of Pharmaceutical Industry, State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai 200040, China
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai 200083, China
| | - Ru Lian
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai 200083, China
| | - Zhenhai Sheng
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai 200083, China
| | - Jinting Mao
- Huangpu Branch of Shanghai Public Security Bureau, Shanghai 200010, China
| | - Chen Mao
- Huangpu Branch of Shanghai Public Security Bureau, Shanghai 200010, China
| | - Chen Liang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai 200083, China
| | - Peng Zhang
- Shanghai Shaanxi Coal Hi-tech Research Institute Co., Ltd., Shanghai 201613, China
| | - Chunfang Ni
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai 200083, China
| | - Rong Wang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai 200083, China
| | - Yurong Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Institute of Forensic Science, Shanghai 200083, China
| |
Collapse
|
3
|
te Brinke E, Arrizabalaga-Larrañaga A, Blokland MH. Insights of ion mobility spectrometry and its application on food safety and authenticity: A review. Anal Chim Acta 2022; 1222:340039. [DOI: 10.1016/j.aca.2022.340039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/01/2022]
|
4
|
Dugheri S, Mucci N, Cappelli G, Trevisani L, Bonari A, Bucaletti E, Squillaci D, Arcangeli G. Advanced Solid-Phase Microextraction Techniques and Related Automation: A Review of Commercially Available Technologies. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8690569. [PMID: 35154846 PMCID: PMC8837452 DOI: 10.1155/2022/8690569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The solid-phase microextraction (SPME), invented by Pawliszyn in 1989, today has a renewed and growing use and interest in the scientific community with fourteen techniques currently available on the market. The miniaturization of traditional sample preparation devices fulfills the new request of an environmental friendly analytical chemistry. The recent upswing of these solid-phase microextraction technologies has brought new availability and range of robotic automation. The microextraction solutions propose today on the market can cover a wide variety of analytical fields and applications. This review reports on the state-of-the-art innovative solid-phase microextraction techniques, especially those used for chromatographic separation and mass-spectrometric detection, given the recent improvements in availability and range of automation techniques. The progressively implemented solid-phase microextraction techniques and related automated commercially available devices are classified and described to offer a valuable tool to summarize their potential combinations to face all the laboratories requirements in terms of analytical applications, robustness, sensitivity, and throughput.
Collapse
Affiliation(s)
- Stefano Dugheri
- Industrial Hygiene and Toxicology Laboratory, University Hospital Careggi, Florence, Italy
| | - Nicola Mucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giovanni Cappelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lucia Trevisani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Elisabetta Bucaletti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Donato Squillaci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulio Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Wang J, Li C, Li P. A Small Footprint and Robust Interface for Solid Phase Microextraction and Mass Spectrometry Based on Vibrating Sharp-Edge Spray Ionization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:304-314. [PMID: 35040644 PMCID: PMC9014482 DOI: 10.1021/jasms.1c00305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Combining solid phase microextraction (SPME) and mass spectrometry (MS) analysis has become increasingly important to many bioanalytical, environmental, and forensic applications due to its simplicity, rapid analysis, and capability of reducing matrix effects for complex samples. To further promote the adoption of SPME-MS based analysis and expand its application scope calls for efficient and convenient interfaces that couple the SPME sample handling with the efficient analyte ionization for MS. Here, we report a novel interface that integrates both the desorption and the ionization steps in one device based on the capillary vibrating sharp-edge spray ionization (cVSSI) method. We demonstrated that the cVSSI is capable of nebulizing liquid samples in a pulled-tip glass capillary with a battery powered function generator. The cVSSI device allows the insertion of a SPME probe into the spray capillary for desorption and then direct nebulization of the desorption solvent in situ. With the integrated interface, we have demonstrated rapid MS analysis of drug compounds from serum samples. Quantitative determination of various drug compounds including metoprolol, pindolol, acebutolol, oxprenolol, capecitabine, and irinotecan was achieved with good linearity (R2 = 0.97-0.99) and limit of detection ranging from 0.25 to 0.59 ng/mL without using a high voltage source. Only 3.5 μL of desorption solvent and 3 min desorption time were needed for the present method. Overall, we demonstrated a portable SPME-MS interface featuring high sensitivity, short analysis time, small footprint, and low cost, which makes it an attractive method for many applications requiring sample cleanup including drug compound monitoring, environmental sample analysis, and forensic sample analysis.
Collapse
Affiliation(s)
- Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| |
Collapse
|