1
|
Velapasamy S, Dawson CW, Young LS, Paterson IC, Yap LF. The Dynamic Roles of TGF-β Signalling in EBV-Associated Cancers. Cancers (Basel) 2018; 10:E247. [PMID: 30060514 PMCID: PMC6115974 DOI: 10.3390/cancers10080247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-β signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of TGF-β in regulating the EBV life cycle in tumour cells is also discussed.
Collapse
Affiliation(s)
- Sharmila Velapasamy
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Christopher W Dawson
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Ian C Paterson
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Lee Fah Yap
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Nanbo A, Ohashi M, Yoshiyama H, Ohba Y. The Role of Transforming Growth Factor β in Cell-to-Cell Contact-Mediated Epstein-Barr Virus Transmission. Front Microbiol 2018; 9:984. [PMID: 29867885 PMCID: PMC5962739 DOI: 10.3389/fmicb.2018.00984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Infection of Epstein–Barr virus (EBV), a ubiquitous human gamma herpesvirus, is closely linked to various lymphoid and epithelial malignancies. Previous studies demonstrated that the efficiency of EBV infection in epithelial cells is significantly enhanced by coculturing them with latently infected B cells relative to cell-free infection, suggesting that cell-to-cell contact-mediated viral transmission is the dominant mode of infection by EBV in epithelial cells. However, a detailed mechanism underlying this process has not been fully understood. In the present study, we assessed the role of transforming growth factor β (TGF-β), which is known to induce EBV's lytic cycle by upregulation of EBV's latent-lytic switch BZLF1 gene. We have found that 5 days of cocultivation facilitated cell-to-cell contact-mediated EBV transmission. Replication of EBV was induced in cocultured B cells both with and without a direct cell contact in a time-dependent manner. Treatment of a blocking antibody for TGF-β suppressed both induction of the lytic cycle in cocultured B cells and subsequent viral transmission. Cocultivation with epithelial cells facilitated expression of TGF-β receptors in B cells and increased their susceptibility to TGF-β. Finally, we confirmed the spontaneous secretion of TGF-β from epithelial cells, which was not affected by cell-contact. In contrast, the extracellular microvesicles, exosomes derived from cocultured cells partly contributed to cell-to-cell contact-mediated viral transmission. Taken together, our findings support a role for TGF-β derived from epithelial cells in efficient viral transmission, which fosters induction of the viral lytic cycle in the donor B cells.
Collapse
Affiliation(s)
- Asuka Nanbo
- Department of Cell Physiology, Faculty and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Makoto Ohashi
- Department of Oncology, University of Wisconsin, Madison, WI, United States
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Yusuke Ohba
- Department of Cell Physiology, Faculty and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Campion EM, Hakimjavadi R, Loughran ST, Phelan S, Smith SM, D'Souza BN, Tierney RJ, Bell AI, Cahill PA, Walls D. Repression of the proapoptotic cellular BIK/NBK gene by Epstein-Barr virus antagonizes transforming growth factor β1-induced B-cell apoptosis. J Virol 2014; 88:5001-5013. [PMID: 24554662 PMCID: PMC3993823 DOI: 10.1128/jvi.03642-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/13/2014] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED The Epstein-Barr virus (EBV) establishes a lifelong latent infection in humans. EBV infection of primary B cells causes cell activation and proliferation, a process driven by the viral latency III gene expression program, which includes EBV nuclear proteins (EBNAs), latent membrane proteins, and untranslated RNAs, including microRNAs. Some latently infected cells enter the long-lived memory B-cell compartment and express only EBNA1 transiently (Lat I) or no EBV protein at all (Lat 0). Targeting the molecular machinery that controls B-cell fate decisions, including the Bcl-2 family of apoptosis-regulating proteins, is crucial to the EBV cycle of infection. Here, we show that BIK (also known as NBK), which encodes a proapoptotic "sensitizer" protein, is repressed by the EBNA2-driven Lat III program but not the Lat I program. BIK repression occurred soon after infection of primary B cells by EBV but not by a recombinant EBV in which the EBNA2 gene had been knocked out. Ectopic BIK induced apoptosis in Lat III cells by a mechanism dependent on its BH3 domain and the activation of caspases. We show that EBNA2 represses BIK in EBV-negative B-cell lymphoma-derived cell lines and that this host-virus interaction can inhibit the proapoptotic effect of transforming growth factor β1 (TGF-β1), a key physiological mediator of B-cell homeostasis. Reduced levels of TGF-β1-associated regulatory SMAD proteins were bound to the BIK promoter in response to EBV Lat III or ectopic EBNA2. These data are evidence of an additional mechanism used by EBV to promote B-cell survival, namely, the transcriptional repression of the BH3-only sensitizer BIK. IMPORTANCE Over 90% of adult humans are infected with the Epstein-Barr virus (EBV). EBV establishes a lifelong silent infection, with its DNA residing in small numbers of blood B cells that are a reservoir from which low-level virus reactivation and shedding in saliva intermittently occur. Importantly, EBV DNA is found in some B-cell-derived tumors in which viral genes play a key role in tumor cell emergence and progression. Here, we report for the first time that EBV can shut off a B-cell gene called BIK. When activated by a molecular signal called transforming growth factor β1 (TGF-β1), BIK plays an important role in killing unwanted B cells, including those infected by viruses. We describe the key EBV-B-cell molecular interactions that lead to BIK shutoff. These findings further our knowledge of how EBV prevents the death of its host cell during infection. They are also relevant to certain posttransplant lymphomas where unregulated cell growth is caused by EBV genes.
Collapse
Affiliation(s)
- Eva M. Campion
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Roya Hakimjavadi
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad T. Loughran
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Susan Phelan
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Sinéad M. Smith
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Brendan N. D'Souza
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Rosemary J. Tierney
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew I. Bell
- School of Cancer Sciences, College of Medicine and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Paul A. Cahill
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
- Vascular Biology Research Group, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| |
Collapse
|
4
|
Inhibition of germinal centre apoptotic programmes by epstein-barr virus. Adv Hematol 2011; 2011:829525. [PMID: 22110506 PMCID: PMC3202104 DOI: 10.1155/2011/829525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/26/2011] [Indexed: 01/20/2023] Open
Abstract
To establish a persistent latent infection, Epstein-Barr virus (EBV) faces a challenge in that the virus-infected host cell must transit through the germinal centre reaction. This is a site of B cell differentiation where antibody responses are optimised, and the selection criteria for B cells are stringent. The germinal centre environment is harsh, and the vast majority of B cells here die by apoptosis. Only cells receiving adequate survival signals will differentiate fully to be released into the periphery as long-term memory B cells (the site of persistence). In this review, we detail the apoptotic pathways potentially encountered by EBV-infected B cells during the process of infection, and we describe the functions of those EBV-regulated cellular and viral genes that help promote survival of the host B cell.
Collapse
|
5
|
Carter CJ. Epstein-Barr and other viral mimicry of autoantigens, myelin and vitamin D-related proteins and of EIF2B, the cause of vanishing white matter disease: massive mimicry of multiple sclerosis relevant proteins by the Synechococcus phage. Immunopharmacol Immunotoxicol 2011; 34:21-35. [PMID: 21486137 DOI: 10.3109/08923973.2011.572262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Epstein-Barr virus expresses proteins containing numerous short consensi (identical pentapeptides at least, or longer gapped consensi) that are identical to those in 16 multiple sclerosis autoantigens or in the products of multiple sclerosis susceptibility genes. Other viruses implicated in multiple sclerosis also display such mimicry and the Synechococcus phage was identified as a novel and major contributor to this phenomenon. Cyanobacteria hosts of Synechococcus phage favor temperate climes, in line with multiple sclerosis distribution, and bacterial and phage ecology accords closely with multiple sclerosis epidemiology. Bovine, ovine or canine viral proteins were also identified as autoantigen homologues, in line with epidemiological data linking multiple sclerosis to cattle density, sheep contact and dog ownership. Viral proteins align with known autoantigens, other myelin and vitamin D-related proteins and the translation initiation factor EIF2B, which is implicated in vanishing white matter disease. These data suggest that the autoantigens in multiple sclerosis, which causes demyelination in animal models, may be generated by antibodies raised to viral protein homologues. Multiple autoantibodies may cause multiple sclerosis via protein knockdown and immune activation. Their selective removal may be of clinical benefit as already suggested by promising results using plasmapheresis or immunoadsorption in certain multiple sclerosis patients.
Collapse
Affiliation(s)
- C J Carter
- PolygenicPathways, Saint Leonards-on-sea, East Sussex, UK.
| |
Collapse
|
6
|
KSHV LANA inhibits TGF-beta signaling through epigenetic silencing of the TGF-beta type II receptor. Blood 2008; 111:4731-40. [PMID: 18199825 DOI: 10.1182/blood-2007-09-110544] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Signaling through the transforming growth factor-beta (TGF-beta) pathway results in growth inhibition and induction of apoptosis in various cell types. We show that this pathway is blocked in Kaposi sarcoma herpesvirus (KSHV)-infected primary effusion lymphoma through down-regulation of the TGF-beta type II receptor (TbetaRII) by epigenetic mechanisms. Our data also suggest that KSHV infection may result in lower expression of TbetaRII in Kaposi sarcoma and multicentric Castleman disease. KSHV-encoded LANA associates with the promoter of TbetaRII and leads to its methylation and to the deacetylation of proximal histones. Reestablishment of signaling through this pathway reduces viability of these cells, inferring that KSHV-mediated blockage of TGF-beta signaling plays a role in the establishment and progression of KSHV-associated neoplasia. These data suggest a mechanism whereby KSHV evades both the antiproliferative effects of TGF-beta signaling by silencing TbetaRII gene expression and immune recognition by suppressing TGF-beta-responsive immune cells through the elevated secretion of TGF-beta1.
Collapse
|
7
|
Chen G, Ghosh P, Osawa H, Sasaki CY, Rezanka L, Yang J, O'Farrell TJ, Longo DL. Resistance to TGF-beta 1 correlates with aberrant expression of TGF-beta receptor II in human B-cell lymphoma cell lines. Blood 2007; 109:5301-7. [PMID: 17339425 PMCID: PMC1890833 DOI: 10.1182/blood-2006-06-032128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resistance to transforming growth factor (TGF)-beta1-mediated growth suppression in tumor cells is often associated with the functional loss of TGF-beta receptors. Here we describe two B-cell lymphoma cell lines (DB and RL) that differ in their sensitivity to TGF-beta1-mediated growth suppression. The TGF-beta1-resistant cell line DB lacked functional TGF-beta receptor II (T beta RII) in contrast to the TGF-beta-responsive cell line RL, whereas both cell lines had comparable levels of receptor I (T beta RI). Lack of functional T beta RII was correlated with the lack of TGF-beta1-induced nuclear translocation of phospho-Smad3 and phospho-Smad2, the lack of nuclear expression of p21(Cip1/WAF1), and the down-regulation of c-Myc in DB cells. Transfection of wild-type, but not a C-terminal-truncated, form of T beta RII rendered the DB cell line responsive to TGF-beta1-mediated growth suppression. Analysis of the T beta RII gene in DB cells revealed the absence of T beta RII message, which was reversed upon 5'-azacytidine treatment, indicating that the promoter methylation might be the cause of gene silencing. Promoter analysis revealed CpG methylations at -25 and -140 that correlated with the gene silencing. These data suggest that promoter methylation plays an important role in T beta RII gene silencing and subsequent development of a TGF-beta1-resistant phenotype by some B-cell lymphoma cells.
Collapse
Affiliation(s)
- Gang Chen
- Lymphocyte Cell Biology Unit, Laboratory of Immunology, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|