1
|
Itarte M, Forés E, Martínez-Puchol S, Scheiber L, Vázquez-Suñé E, Bofill-Mas S, Rusiñol M. Exploring viral contamination in urban groundwater and runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174238. [PMID: 38925381 DOI: 10.1016/j.scitotenv.2024.174238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The reliance of the global population on urban aquifers is steadily increasing, and urban aquifers are susceptible to pathogenic contamination through sources such as sewer leakage or urban runoff. However, there is insufficient monitoring of groundwater quality in urban areas. In this study, quantitative polymerase chain reaction (qPCR) was employed to evaluate the presence of human fecal viral indicators and viral pathogens in urban wastewater (n = 13) and groundwater (n = 12) samples from four locations in Barcelona with different degrees of urbanization, as well as in runoff samples (n = 2). Additionally, a target enrichment sequencing (TES) approach was utilized to explore the viral diversity within groundwater and runoff samples, offering insights into viral contamination and potential virus transmission routes in urban areas. Human adenovirus (HAdV) was identified in all wastewater samples, 67 % (8/12) of groundwater samples, and one runoff sample by qPCR indicating human viral fecal contamination. The viral pathogen Norovirus genogroup GI (NoV GI) was detected in wastewater and two winter groundwater samples from highly and medium urbanized areas. NoV genogroup GII (NoV GII), Enterovirus (EV) and SARS-CoV-2 were exclusively detected in wastewater. Human and other vertebrate viruses were detected in groundwater and runoff samples using TES. This study gives insights about the virome present in urban water sources, emphasizing the need for thorough monitoring and deeper understanding to address emerging public health concerns.
Collapse
Affiliation(s)
- Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain.
| | - Eva Forés
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Vicerectorat de Recerca, Universitat de Barcelona (UB), 08007 Barcelona, Spain
| | - Laura Scheiber
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
| | - Enric Vázquez-Suñé
- Department of Geosciences, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center of the Spanish Council for Scientific Research (CSIC), 08034 Barcelona, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), 08028 Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), 08001 Barcelona, Spain
| |
Collapse
|
2
|
Lérias JR, Paraschoudi G, de Sousa E, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Microbes as Master Immunomodulators: Immunopathology, Cancer and Personalized Immunotherapies. Front Cell Dev Biol 2020; 7:362. [PMID: 32039196 PMCID: PMC6989410 DOI: 10.3389/fcell.2019.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The intricate interplay between the immune system and microbes is an essential part of the physiological homeostasis in health and disease. Immunological recognition of commensal microbes, such as bacterial species resident in the gut or lung as well as dormant viral species, i.e., cytomegalovirus (CMV) or Epstein-Barr virus (EBV), in combination with a balanced immune regulation, is central to achieve immune-protection. Emerging evidence suggests that immune responses primed to guard against commensal microbes may cause unexpected pathological outcomes, e.g., chronic inflammation and/or malignant transformation. Furthermore, translocation of immune cells from one anatomical compartment to another, i.e., the gut-lung axis via the lymphatics or blood has been identified as an important factor in perpetrating systemic inflammation, tissue destruction, as well as modulating host-protective immune responses. We present in this review immune response patterns to pathogenic as well as non-pathogenic microbes and how these immune-recognition profiles affect local immune responses or malignant transformation. We discuss personalized immunological therapies which, directly or indirectly, target host biological pathways modulated by antimicrobial immune responses.
Collapse
Affiliation(s)
- Joana R. Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | - Antonio Beltrán
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, University College London, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
3
|
Possible Human Papillomavirus 38 Contamination of Endometrial Cancer RNA Sequencing Samples in The Cancer Genome Atlas Database. J Virol 2015; 89:8967-73. [PMID: 26085148 DOI: 10.1128/jvi.00822-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/09/2015] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Viruses are causally associated with a number of human malignancies. In this study, we sought to identify new virus-cancer associations by searching RNA sequencing data sets from >2,000 patients, encompassing 21 cancers from The Cancer Genome Atlas (TCGA), for the presence of viral sequences. In agreement with previous studies, we found human papillomavirus 16 (HPV16) and HPV18 in oropharyngeal cancer and hepatitis B and C viruses in liver cancer. Unexpectedly, however, we found HPV38, a cutaneous form of HPV associated with skin cancer, in 32 of 168 samples from endometrial cancer. In 12 of the HPV38-positive (HPV38(+)) samples, we observed at least one paired read that mapped to both human and HPV38 genomes, indicative of viral integration into the host DNA, something not previously demonstrated for HPV38. The expression levels of HPV38 transcripts were relatively low, and all 32 HPV38(+) samples belonged to the same experimental batch of 40 samples, whereas none of the other 128 endometrial carcinoma samples were HPV38(+), raising doubts about the significance of the HPV38 association. Moreover, the HPV38(+) samples contained the same 10 novel single nucleotide variations (SNVs), leading us to hypothesize that one patient was infected with this new isolate of HPV38, which was integrated into his/her genome and may have cross-contaminated other TCGA samples within batch 228. Based on our analysis, we propose guidelines to examine the batch effect, virus expression level, and SNVs as part of next-generation sequencing (NGS) data analysis for evaluating the significance of viral/pathogen sequences in clinical samples. IMPORTANCE High-throughput RNA sequencing (RNA-Seq), followed by computational analysis, has vastly accelerated the identification of viral and other pathogenic sequences in clinical samples, but cross-contamination during the processing of the samples remain a major problem that can lead to erroneous conclusions. We found HPV38 sequences specifically present in RNA-Seq samples from endometrial cancer patients from TCGA, a virus not previously associated with this type of cancer. However, multiple lines of evidence suggest possible cross-contamination in these samples, which were processed together in the same batch. Despite this potential cross-contamination, our data indicate that we have detected a new isolate of HPV38 that appears to be integrated into the human genome. We also provide general guidelines for computational detection and interpretation of pathogen-disease associations.
Collapse
|
4
|
Co NNC, Chu LO, Chow JKF, Tam JWO, Ng EKO. HPV Prevalence and Detection of Rare HPV Genotypes in Hong Kong Women from Southern China with Cytological Abnormalities. ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/312706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomavirus (HPV) has been identified as the primary cause of cervical squamous intraepithelial lesion and invasive cervical cancer. The emergence of various commercial HPV genotyping kits with different characteristics facilitates the detection of most high-risk and low-risk HPV genotypes, but the rare HPV types are usually underdiagnosed. In the present study, HPV detection was performed using the GenoFlow HPV Array Test kit (DiagCor Bioscience), which can identify 33 HPV subtypes by specific probes. Besides, a HPV consensus probe (universal probe) was designed to capture not only the 33 genotypes but also rare subtypes. Of the 1643 Southern Chinese women tested between 2012 and 2013, the HPV prevalence was 42.3%, with HPV 52 (139/1643, 8.5%), HPV 81 (89/1643, 5.4%), and HPV 16 (63/1643, 3.8%) being the most frequent subtypes detected. Among all 695 HPV-positive cases, 56 (8.1%) cases were only detected by the universal probe, in which 5 were either ASCUS or LSIL cases. Sequencing results confirmed HPV types 30, 91, and 74, and the intratypic variants of HPV 72 and 82 were present in the 5 cases. The result suggests that some rare HPV subtypes might be involved in cervical lesions.
Collapse
Affiliation(s)
- Ngai Na Chloe Co
- Molecular Diagnostics Division, DiagCor Bioscience Incorporation Ltd, Hong Kong SAR, Hong Kong
| | - Lai-On Chu
- Molecular Diagnostics Division, DiagCor Bioscience Incorporation Ltd, Hong Kong SAR, Hong Kong
| | - Joseph K. F. Chow
- Molecular Diagnostics Division, DiagCor Bioscience Incorporation Ltd, Hong Kong SAR, Hong Kong
| | - Joseph W. O. Tam
- Molecular Diagnostics Division, DiagCor Bioscience Incorporation Ltd, Hong Kong SAR, Hong Kong
| | - Enders K. O. Ng
- Molecular Diagnostics Division, DiagCor Bioscience Incorporation Ltd, Hong Kong SAR, Hong Kong
| |
Collapse
|
5
|
Kocjan BJ, Jelen MM, Maver PJ, Seme K, Poljak M. Pre-vaccination genomic diversity of human papillomavirus genotype 6 (HPV 6): A comparative analysis of 21 full-length genome sequences. INFECTION GENETICS AND EVOLUTION 2011; 11:1805-10. [DOI: 10.1016/j.meegid.2011.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/08/2011] [Accepted: 06/27/2011] [Indexed: 11/26/2022]
|
6
|
Kovanda A, Kocjan BJ, Luzar B, Bravo IG, Poljak M. Characterization of novel cutaneous human papillomavirus genotypes HPV-150 and HPV-151. PLoS One 2011; 6:e22529. [PMID: 21799888 PMCID: PMC3143161 DOI: 10.1371/journal.pone.0022529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/23/2011] [Indexed: 11/19/2022] Open
Abstract
DNA from two novel HPV genotypes, HPV-150 and HPV-151, isolated from hair follicles of immuno-competent individuals, was fully cloned, sequenced and characterized. The complete genomes of HPV-150 and HPV-151 are 7,436-bp and 7,386-bp in length, respectively. Both contain genes for at least six proteins, namely E6, E7, E1, E2, L2, L1, as well as a non-coding upstream regulatory region located between the L1 and E6 genes: spanning 416-bp in HPV-150 (genomic positions 7,371 to 350) and 322-bp in HPV-151 (genomic positions 7,213 to 148). HPV-150 and HPV-151 are phylogenetically placed within the Betapapillomavirus genus and are most closely related to HPV-96 and HPV-22, respectively. As in other members of this genus, the intergenic E2-L2 region is very short and does not encode for an E5 gene. Both genotypes contain typical zinc binding domains in their E6 and E7 proteins, but HPV-151 lacks the regular pRb-binding core sequence within its E7 protein. In order to assess the tissue predilection and clinical significance of the novel genotypes, quantitative type-specific real-time PCR assays were developed. The 95% detection limits of the HPV-150 and HPV-151 assays were 7.3 copies/reaction (range 5.6 to 11.4) and 3.4 copies/reaction (range 2.5 to 6.0), respectively. Testing of a representative collection of HPV-associated mucosal and cutaneous benign and malignant neoplasms and hair follicles (total of 540 samples) revealed that HPV-150 and HPV-151 are relatively rare genotypes with a cutaneous tropism. Both genotypes were found in sporadic cases of common warts and SCC and BCC of the skin as single or multiple infections usually with low viral loads. HPV-150 can establish persistent infection of hair follicles in immuno-competent individuals. A partial L1 sequence of a putative novel HPV genotype, related to HPV-150, was identified in a squamous cell carcinoma of the skin obtained from a 64-year old immuno-compromised male patient.
Collapse
Affiliation(s)
- Anja Kovanda
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan J. Kocjan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan Luzar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ignacio G. Bravo
- Unit of Infections and Cancer, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Genomics and Health Centre for Public Health Research (CSISP), Valencia, Spain
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
7
|
Vrtačnik Bokal E, Kocjan BJ, Poljak M, Bogovac Ž, Jančar N. Genomic variants of human papillomavirus genotypes 16, 18, and 33 in women with cervical cancer in Slovenia. J Obstet Gynaecol Res 2010; 36:1204-13. [DOI: 10.1111/j.1447-0756.2010.01316.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Jančar N, Kocjan BJ, Poljak M, Lunar MM, Bokal EV. Distribution of human papillomavirus genotypes in women with cervical cancer in Slovenia. Eur J Obstet Gynecol Reprod Biol 2009; 145:184-8. [DOI: 10.1016/j.ejogrb.2009.04.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/23/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
|