1
|
Jiang Z, Sun Z, Hu J, Li D, Xu X, Li M, Feng Z, Zeng S, Mao H, Hu C. Grass Carp Mex3A Promotes Ubiquitination and Degradation of RIG-I to Inhibit Innate Immune Response. Front Immunol 2022; 13:909315. [PMID: 35865536 PMCID: PMC9295999 DOI: 10.3389/fimmu.2022.909315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
As one of the Mex3 family members, Mex3A is crucial in cell proliferation, migration, and apoptosis in mammals. In this study, a novel gene homologous to mammalian Mex3A (named CiMex3A, MW368974) was cloned and identified in grass carp, which is 1,521 bp in length encoding a putative polypeptide of 506 amino acids. In CIK cells, CiMex3A is upregulated after stimulation with LPS, Z-DNA, and especially with intracellular poly(I:C). CiMex3A overexpression reduces the expressions of IFN1, ISG15, and pro-inflammatory factors IL8 and TNFα; likewise, Mex3A inhibits IRF3 phosphorylation upon treatment with poly(I:C). A screening test to identify potential targets suggested that CiMex3A interacts with RIG-I exclusively. Co-localization analysis showed that Mex3A and RIG-I are simultaneously located in the endoplasmic reticulum, while they rarely appear in the endosome, mitochondria, or lysosome after exposure to poly(I:C). However, RIG-I is mainly located in the early endosome and then transferred to the late endosome following stimulation with poly(I:C). Moreover, we investigated the molecular mechanism underlying CiMex3A-mediated suppression of RIG-I ubiquitination. The results demonstrated that Mex3A truncation mutant (deletion in the RING domain) can still interact physically with RIG-I, but fail to degrade it, suggesting that Mex3A also acts as a RING-type E3 ubiquitin ligase. Taken together, this study showed that grass carp Mex3A can interact with RIG-I in the endoplasmic reticulum following poly(I:C) stimulation, and then Mex3A facilitates the ubiquitination and degradation of RIG-I to inhibit IRF3-mediated innate antiviral immune response.
Collapse
Affiliation(s)
- Zeyin Jiang
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Zhichao Sun
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
- Human Aging Research Institute, Nanchang University, Nanchang, China
- Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Jihuan Hu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Dongming Li
- School of Basic Medical Sciences, Fuzhou Medical University, Fuzhou, China
| | - Xiaowen Xu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Meifeng Li
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Zhiqing Feng
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shanshan Zeng
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huiling Mao
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
| | - Chengyu Hu
- School of Life Science, Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, Nanchang University, Nanchang, China
- *Correspondence: Chengyu Hu,
| |
Collapse
|
2
|
Lee Y, Wessel AW, Xu J, Reinke JG, Lee E, Kim SM, Hsu AP, Zilberman-Rudenko J, Cao S, Enos C, Brooks SR, Deng Z, Lin B, de Jesus AA, Hupalo DN, Piotto DG, Terreri MT, Dimitriades VR, Dalgard CL, Holland SM, Goldbach-Mansky R, Siegel RM, Hanson EP. Genetically programmed alternative splicing of NEMO mediates an autoinflammatory disease phenotype. J Clin Invest 2022; 132:128808. [PMID: 35289316 PMCID: PMC8920334 DOI: 10.1172/jci128808] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Host defense and inflammation are regulated by the NF-κB essential modulator (NEMO), a scaffolding protein with a broad immune cell and tissue expression profile. Hypomorphic mutations in inhibitor of NF-κB kinase regulatory subunit gamma (IKBKG) encoding NEMO typically present with immunodeficiency. Here, we characterized a pediatric autoinflammatory syndrome in 3 unrelated male patients with distinct X-linked IKBKG germline mutations that led to overexpression of a NEMO protein isoform lacking the domain encoded by exon 5 (NEMO-Δex5). This isoform failed to associate with TANK binding kinase 1 (TBK1), and dermal fibroblasts from affected patients activated NF-κB in response to TNF but not TLR3 or RIG-I–like receptor (RLR) stimulation when isoform levels were high. By contrast, T cells, monocytes, and macrophages that expressed NEMO-Δex5 exhibited increased NF-κB activation and IFN production, and blood cells from these patients expressed a strong IFN and NF-κB transcriptional signature. Immune cells and TNF-stimulated dermal fibroblasts upregulated the inducible IKK protein (IKKi) that was stabilized by NEMO-Δex5, promoting type I IFN induction and antiviral responses. These data revealed how IKBKG mutations that lead to alternative splicing of skipping exon 5 cause a clinical phenotype we have named NEMO deleted exon 5 autoinflammatory syndrome (NDAS), distinct from the immune deficiency syndrome resulting from loss-of-function IKBKG mutations.
Collapse
Affiliation(s)
- Younglang Lee
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Alex W Wessel
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Jiazhi Xu
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Julia G Reinke
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Eries Lee
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Somin M Kim
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Amy P Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jevgenia Zilberman-Rudenko
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Sha Cao
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Clinton Enos
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS and
| | - Zuoming Deng
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS and
| | - Bin Lin
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel N Hupalo
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Daniela Gp Piotto
- Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria T Terreri
- Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Victoria R Dimitriades
- Division of Infectious Diseases, Immunology & Allergy University of California Davis Health, Sacramento, California, USA
| | - Clifton L Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA.,Novartis Institutes for BioMedical Research WSJ, Basel, Switzerland
| | - Eric P Hanson
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Zhou Y, He C, Wang L, Ge B. Post-translational regulation of antiviral innate signaling. Eur J Immunol 2017; 47:1414-1426. [PMID: 28744851 PMCID: PMC7163624 DOI: 10.1002/eji.201746959] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
The innate immune system initiates immune responses by pattern‐recognition receptors (PRR). Virus‐derived nucleic acids are sensed by the retinoic acid‐inducible gene I (RIG‐I)‐like receptor (RLR) family and the toll‐like receptor (TLR) family as well as the DNA sensor cyclic GMP‐AMP (cGAMP) synthase (cGAS). These receptors activate IRF3/7 and NF‐κB signaling pathways to induce the expression of type I interferons (IFNs) and other cytokines firing antiviral responses within the cell. However, to achieve a favorable outcome for the host, a balanced production of IFNs and activation of antiviral responses is required. Post‐translational modifications (PTMs), such as the covalent linkage of functional groups to amino acid chains, are crucial for this immune homeostasis in antiviral responses. Canonical PTMs including phosphorylation and ubiquitination have been extensively studied and other PTMs such as methylation, acetylation, SUMOylation, ADP‐ribosylation and glutamylation are being increasingly implicated in antiviral innate immunity. Here we summarize our recent understanding of the most important PTMs regulating the antiviral innate immune response, and their role in virus‐related immune pathogenesis.
Collapse
Affiliation(s)
- Yilong Zhou
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenxi He
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lin Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Yu H, Zhang X, Liu R, Li H, Xiao X, Zhou Y, Wei C, Yang M, Liao M, Zhao J, Xia Z, Liao Q. Mcl-1 suppresses abasic site repair following bile acid-induced hepatic cellular DNA damage. Tumour Biol 2017; 39:1010428317712102. [PMID: 28681695 DOI: 10.1177/1010428317712102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In cholestasis, increases in bile acid levels result in the generation of reactive oxygen species and the induction of DNA damage and mutation. It is believed that bile acid accumulation is associated with liver tumorigenesis. However, the mechanism that underpins this phenomenon remains to be elucidated. Mcl-1, which is overexpressed in hepatic cells, is a pro-survival member of the Bcl-2 family. In this study, we observed that Mcl-1 potently suppresses the repair of bile acid-induced abasic (apurinic/apyrimidinic) sites in DNA lesions. Upon exposure of hepatic cells to glycochenodeoxycholate, one of the major conjugated human bile acids, we observed an increase in AP site accumulation along with induction of poly(ADP-ribose) polymerase and XRCC1 ( X-Ray Repair Cross Complementing 1). In addition, accumulation of Mcl-1 was observed in the nuclei of QGY-7703 cells in response to glycochenodeoxycholate stimulation. Knockdown of endogenous Mcl-1 by RNA interference significantly accelerated the repair of DNA lesions in glycochenodeoxycholate-treated cells. However, unlike XRCC1, poly(ADP-ribose) polymerase was induced following Mcl-1 knockdown. Conversely, poly(ADP-ribose) polymerase suppression was observed following glycochenodeoxycholate treatment of cells overexpressing Mcl-1. Moreover, AP-site counting analyses revealed that DNA repair activity was enhanced in cells overexpressing poly(ADP-ribose) polymerase under glycochenodeoxycholate stress conditions. It is well known that poly(ADP-ribose) polymerase plays a crucial role in the base excision repair pathway. Thus, our findings suggest that Mcl-1 suppresses base excision repair by inhibiting poly(ADP-ribose) polymerase induction following glycochenodeoxycholate-induced DNA damage. These results potentially explain how bile acid accumulation results in genetic instability and carcinogenesis.
Collapse
Affiliation(s)
- Haiyang Yu
- 1 Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Xiaoqing Zhang
- 2 The Fifth Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Ren Liu
- 3 Merck Research Laboratory, Kenilworth, NJ, USA
| | - Hui Li
- 4 State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Xiaolong Xiao
- 4 State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Yuzheng Zhou
- 4 State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Chaoying Wei
- 4 State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Manyi Yang
- 1 Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Mingmei Liao
- 1 Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jinfeng Zhao
- 1 Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Zanxian Xia
- 4 State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, P.R. China
| | - Qiande Liao
- 1 Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
5
|
Baker PJ, De Nardo D, Moghaddas F, Tran LS, Bachem A, Nguyen T, Hayman T, Tye H, Vince JE, Bedoui S, Ferrero RL, Masters SL. Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiol Rev 2017; 97:1165-1209. [DOI: 10.1152/physrev.00026.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Cell surface innate immune receptors can directly detect a variety of extracellular pathogens to which cytoplasmic innate immune sensors are rarely exposed. Instead, within the cytoplasm, the environment is rife with cellular machinery and signaling pathways that are indirectly perturbed by pathogenic microbes to activate intracellular sensors, such as pyrin, NLRP1, NLRP3, or NLRC4. Therefore, subtle changes in key intracellular processes such as phosphorylation, ubiquitination, and other pathways leading to posttranslational protein modification are key determinants of innate immune recognition in the cytoplasm. This concept is critical to establish the “guard hypothesis” whereby otherwise homeostatic pathways that keep innate immune sensors at bay are released in response to alterations in their posttranslational modification status. Originally identified in plants, evidence that a similar guardlike mechanism exists in humans has recently been identified, whereby a mutation that prevents phosphorylation of the innate immune sensor pyrin triggers a dominantly inherited autoinflammatory disease. It is also noteworthy that even when a cytoplasmic innate immune sensor has a direct ligand, such as bacterial peptidoglycan (NOD1 or NOD2), RNA (RIG-I or MDA5), or DNA (cGAS or IFI16), it can still be influenced by posttranslational modification to dramatically alter its response. Therefore, due to their existence in the cytoplasmic milieu, posttranslational modification is a key determinant of intracellular innate immune receptor functionality.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Le Son Tran
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Annabell Bachem
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Tan Nguyen
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Thomas Hayman
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Hazel Tye
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - James E. Vince
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Sammy Bedoui
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Richard L. Ferrero
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
6
|
Abstract
RIG-I-like receptors (RLRs) are cytosolic innate immune sensors that detect pathogenic RNA and induce a systemic antiviral response. During the last decade, many studies focused on their molecular characterization and the identification of RNA agonists. Therefore, it became more and more clear that RLR activation needs to be carefully regulated, because constitutive signaling or detection of endogenous RNA through loss of specificity is detrimental. Here, we review the current understanding of RLR activation and selectivity. We specifically focus upon recent findings on the function of the helicase domain in discriminating between different RNAs, and whose malfunctioning causes serious autoimmune diseases.
Collapse
Affiliation(s)
- Charlotte Lässig
- From the Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, 81377 Munich and
| | - Karl-Peter Hopfner
- From the Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität, 81377 Munich and
- the Center for Integrated Protein Sciences, 81377 Munich, Germany
| |
Collapse
|
7
|
Liu Y, Olagnier D, Lin R. Host and Viral Modulation of RIG-I-Mediated Antiviral Immunity. Front Immunol 2017; 7:662. [PMID: 28096803 PMCID: PMC5206486 DOI: 10.3389/fimmu.2016.00662] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens. Rapid and efficient detection of pathogen-associated molecular patterns via pattern-recognition receptors is essential for the host to mount defensive and protective responses. Retinoic acid-inducible gene-I (RIG-I) is critical in triggering antiviral and inflammatory responses for the control of viral replication in response to cytoplasmic virus-specific RNA structures. Upon viral RNA recognition, RIG-I recruits the mitochondrial adaptor protein mitochondrial antiviral signaling protein, which leads to a signaling cascade that coordinates the induction of type I interferons (IFNs), as well as a large variety of antiviral interferon-stimulated genes. The RIG-I activation is tightly regulated via various posttranslational modifications for the prevention of aberrant innate immune signaling. By contrast, viruses have evolved mechanisms of evasion, such as sequestrating viral structures from RIG-I detections and targeting receptor or signaling molecules for degradation. These virus–host interactions have broadened our understanding of viral pathogenesis and provided insights into the function of the RIG-I pathway. In this review, we summarize the recent advances regarding RIG-I pathogen recognition and signaling transduction, cell-intrinsic control of RIG-I activation, and the viral antagonism of RIG-I signaling.
Collapse
Affiliation(s)
- Yiliu Liu
- Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - David Olagnier
- Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Rongtuan Lin
- Jewish General Hospital, Lady Davis Institute, McGill University, Montreal, QC, Canada; Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Kim N, Now H, Nguyen NTH, Yoo JY. Multilayered regulations of RIG-I in the anti-viral signaling pathway. J Microbiol 2016; 54:583-587. [PMID: 27572506 DOI: 10.1007/s12275-016-6322-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
RIG-I is a cytosolic receptor recognizing virus-specific RNA structures and initiates an antiviral signaling that induces the production of interferons and proinflammatory cytokines. Because inappropriate RIG-I signaling affects either viral clearance or immune toxicity, multiple regulations of RIG-I have been investigated since its discovery as the viral RNA detector. In this review, we describe the recent progress in research on the regulation of RIG-I activity or abundance. Specifically, we focus on the mechanism that modulates RIG-I-dependent antiviral response through post-translational modifications of or protein-protein interactions with RIG-I.
Collapse
Affiliation(s)
- Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| | - Hesung Now
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Nhung T H Nguyen
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|