1
|
Krüger N, Laufer SA, Pillaiyar T. An overview of progress in human metapneumovirus (hMPV) research: Structure, function, and therapeutic opportunities. Drug Discov Today 2025; 30:104364. [PMID: 40286981 DOI: 10.1016/j.drudis.2025.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/09/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The human metapneumovirus (hMPV), a member of the Pneumoviridae family, is a significant respiratory pathogen that causes severe infections in infants, children, the elderly, adults with chronic illnesses, and individuals with immunocompromised conditions. Globally, hMPV is recognized as the second leading cause of bronchiolitis and pneumonia among children under five. The absence of targeted antiviral treatments or vaccines for hMPV significantly strains the global health-care system. This review summarizes recent advances and scientific findings on hMPV by reviewing the current literature on its life cycle, structure, function, prevention, and treatment options.
Collapse
Affiliation(s)
- Nadine Krüger
- Platform Infection Models, German Primate Center, Leibniz Institute for Primate Research Göttingen 37077 Göttingen, Germany
| | - Stefan A Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany; Cluster of Excellence 'Image Guided and Functionally Instructed Tumor Therapies' (iFIT), Eberhard Karls University of Tübingen, Tübingen 72076, Germany; Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany; Tübingen Center for Academic Drug Discovery, Eberhard Karls University of Tübingen 72076 Tübingen, Germany.
| |
Collapse
|
2
|
Chen Q, Yuan Y, Cai F, Li Z, Wei Q, Wang W. Single-Nucleus and Spatial Transcriptomics Revealing Host Response Differences Triggered by Mutated Virus in Severe Dengue. Viruses 2024; 16:1779. [PMID: 39599894 PMCID: PMC11599075 DOI: 10.3390/v16111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
Dengue virus (DENV) infection causes various disease manifestations ranging from an asymptomatic state to severe, life-threatening dengue. Despite intensive research, the molecular mechanisms underlying the abnormal host responses and severe disease symptoms caused by evolved DENV strains is not fully understood. First, the spatial structure of mutant DENV was compared via in silico molecular modeling analysis. Second, employing single-nucleus and spatial RNA sequencing, we analyzed and verified transcriptome samples in uninfected, mild (NGC group), and severe (N10 group) liver tissues from murine models. In this study, we obtained a cumulatively mutated DENV-2 N10 with enhanced capability of replication and pathogenicity post 10 serial passages in Ifnra-/- mice. This variant caused severe damage in the liver, as compared with other organs. Furthermore, mutated DENV infection elicited stronger responses in hepatocytes. The critical host factor Nrg4 was identified. It dominated mainly via the activation of the NRG/ErbB pathway in mice with severe symptoms. We report on evolved N10 viruses with changes observed in different organisms and tissue. This evolutionary variant results in high replicability, severe pathogenicity, and strong responses in murine. Moreover, the host responses may play a role by activating the NRG/ErbB signaling pathway. Our findings provide a realistic framework for defining disturbed host responses at the animal model level that might be one of the main causes of severe dengue and the potential application value.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China; (Q.C.)
- National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Yizhen Yuan
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China; (Q.C.)
- National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Fangzhou Cai
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China; (Q.C.)
- National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Zhe Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China; (Q.C.)
- National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Qiang Wei
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China; (Q.C.)
- National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| | - Wei Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China; (Q.C.)
- National Center of Technology Innovation for Animal Model, State Key Laboratory of Respiratory Health and Multimorbidity, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing 100021, China
| |
Collapse
|
3
|
Shulgin A, Spirin P, Lebedev T, Kravchenko A, Glasunov V, Yermak I, Prassolov V. Comparative study of HIV-1 inhibition efficiency by carrageenans from red seaweeds family gigartinaceae, Tichocarpaceae and Phyllophoraceae. Heliyon 2024; 10:e33407. [PMID: 39050420 PMCID: PMC11267007 DOI: 10.1016/j.heliyon.2024.e33407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
The efficiency of human immunodeficiency virus-1 (HIV-1) inhibition by sulfated polysaccharides isolated from the various families of red algae of the Far East Pacific coast were studied. The anti-HIV-1 activity of kappa and lambda-carrageenans from Chondrus armatus, original highly sulfated X-carrageenan with low content of 3,6-anhydrogalactose from Tichocarpus crinitus and i/κ-carrageenan with hybrid structure isolated from Ahnfeltiopsis flabelliformis was found. The antiviral action of these polysaccharides and its low-weight oligosaccharide was compared with commercial κ-carrageenan. Here we used the HIV-1-based lentiviral particles and evaluated that these carrageenans in non-toxic concentrations significantly suppress the transduction potential of lentiviral particles pseudotyped with different envelope proteins, targeting cells of neuronal or T-cell origin. The antiviral action of these carrageenans was confirmed using the chimeric replication competent Mo-MuLV (Moloney murine leukemia retrovirus) encoding marker eGFP protein. We found that X-carrageenans from T. crinitus and its low weight derivative and λ-carrageenan from C. armatus effectively suppress the infection caused by retrovirus. The obtained data suggest that the differences in the suppressive effect of carrageenans on the transduction efficiency of HIV-1 based lentiviral particles may be related to the structural features of the studied polysaccharides.
Collapse
Affiliation(s)
- Andrey Shulgin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russia
| | - Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russia
| | - Anna Kravchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, Russia
| | - Valery Glasunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, Russia
| | - Irina Yermak
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, 690022, Vladivostok, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991, Moscow, Russia
| |
Collapse
|
4
|
Van Den Bergh A, Bailly B, Guillon P, von Itzstein M, Dirr L. Antiviral strategies against human metapneumovirus: Targeting the fusion protein. Antiviral Res 2022; 207:105405. [PMID: 36084851 DOI: 10.1016/j.antiviral.2022.105405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Human metapneumoviruses have emerged in the past decades as an important global pathogen that causes severe upper and lower respiratory tract infections. Children under the age of 2, the elderly and immunocompromised individuals are more susceptible to HMPV infection than the general population due to their suboptimal immune system. Despite the recent discovery of HMPV as a novel important respiratory virus, reports have rapidly described its epidemiology, biology, and pathogenesis. However, progress is still to be made in the development of vaccines and drugs against HMPV infection as none are currently available. Herein, we discuss the importance of HMPV and review the reported strategies for anti-HMPV drug candidates. We also present the fusion protein as a promising antiviral drug target due to its multiple roles in the HMPV lifecycle. This key viral protein has previously been targeted by a range of inhibitors, which will be discussed as they represent opportunities for future drug design.
Collapse
Affiliation(s)
| | - Benjamin Bailly
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
5
|
Rupert R, Rodrigues KF, Thien VY, Yong WTL. Carrageenan From Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, Structure, Production, and Application. FRONTIERS IN PLANT SCIENCE 2022; 13:859635. [PMID: 35620679 PMCID: PMC9127731 DOI: 10.3389/fpls.2022.859635] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Carrageenan is a polysaccharide derived from red algae (seaweed) with enormous economic potential in a wide range of industries, including pharmaceuticals, food, cosmetics, printing, and textiles. Carrageenan is primarily produced through aquaculture-based seaweed farming, with Eucheuma and Kappaphycus species accounting for more than 90% of global output. There are three major types of carrageenan found in red algae: kappa (κ)-, iota (ι)-, and lambda (λ)-carrageenan. Kappaphycus alvarezii is the most common kappa-carrageenan source, and it is primarily farmed in Asian countries such as Indonesia, the Philippines, Vietnam, and Malaysia. Carrageenan extracted from K. alvarezii has recently received a lot of attention due to its economic potential in a wide range of applications. This review will discuss K. alvarezii carrageenan in terms of metabolic and physicochemical structure, extraction methods and factors affecting production yield, as well as current and future applications.
Collapse
Affiliation(s)
- Rennielyn Rupert
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | | | - Vun Yee Thien
- Innovation Center, Xiamen University Malaysia, Sunsuria, Malaysia
| | - Wilson Thau Lym Yong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
- Seaweed Research Unit, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
6
|
Yu Y, Si L, Meng Y. Flavivirus Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:171-197. [PMID: 35412141 DOI: 10.1007/978-981-16-8702-0_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Flaviviruses, including Dengue virus, Zika virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, cause thousands of deaths and millions of illnesses each year. The large outbreak of ZIKV in 2016 reminds us that flaviviruses can pose a serious threat to human safety and public health as emerging and re-emerging viruses. However, there are no specific drugs approved for the treatment of flavivirus infections. Due to no need to enter the cells, viral entry inhibitors have the unique advantage in suppressing viral infections. Flaviviruses bind to receptors and attach to the cell surface, then enter the endosome in a clathrin-dependent manner and finalizes the viral entry process after fusion with the cell membrane in a low pH environment. Small molecules, antibodies or peptides can inhibit flavivirus entry by targeting the above processes. Here, we focus on flavivirus entry inhibitors with well-defined target and antiviral activity. We hope that our review will provide a theoretical basis for flavivirus treatment and drug research and help to accelerate the clinical application of flavivirus entry inhibitors.
Collapse
Affiliation(s)
- Yufeng Yu
- Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Lulu Si
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Meng
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Dali University, Dali, Yunnan, China
| |
Collapse
|
7
|
Álvarez-Viñas M, Souto S, Flórez-Fernández N, Torres MD, Bandín I, Domínguez H. Antiviral Activity of Carrageenans and Processing Implications. Mar Drugs 2021; 19:437. [PMID: 34436276 PMCID: PMC8400836 DOI: 10.3390/md19080437] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Carrageenan and carrageenan oligosaccharides are red seaweed sulfated carbohydrates with well-known antiviral properties, mainly through the blocking of the viral attachment stage. They also exhibit other interesting biological properties and can be used to prepare different drug delivery systems for controlled administration. The most active forms are λ-, ι-, and κ-carrageenans, the degree and sulfation position being determined in their properties. They can be obtained from sustainable worldwide available resources and the influence of manufacturing on composition, structure, and antiviral properties should be considered. This review presents a survey of the antiviral properties of carrageenan in relation to the processing conditions, particularly those assisted by intensification technologies during the extraction stage, and discusses the possibility of further chemical modifications.
Collapse
Affiliation(s)
- Milena Álvarez-Viñas
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Sandra Souto
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.S.); (I.B.)
| | - Noelia Flórez-Fernández
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Maria Dolores Torres
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| | - Isabel Bandín
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (S.S.); (I.B.)
| | - Herminia Domínguez
- CINBIO, Faculty of Science, Universidade de Vigo, Campus Ourense, As Lagoas, 32004 Ourense, Spain; (M.Á.-V.); (N.F.-F.); (M.D.T.)
| |
Collapse
|
8
|
Lee C. Carrageenans as Broad-Spectrum Microbicides: Current Status and Challenges. Mar Drugs 2020; 18:md18090435. [PMID: 32825645 PMCID: PMC7551811 DOI: 10.3390/md18090435] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Different kinds of red algae are enriched with chemically diverse carbohydrates. In particular, a group of sulfated polysaccharides, which were isolated from the cell walls of red algae, gained a large amount of attention due to their broad-spectrum antimicrobial activities. Within that group, carrageenans (CGs) were expected to be the first clinically applicable microbicides that could prevent various viral infections due to their superior antiviral potency and desirable safety profiles in subclinical studies. However, their anticipated beneficial effects could not be validated in human studies. To assess the value of a second attempt at pharmacologically developing CGs as a new class of preventive microbicides, all preclinical and clinical development processes of CG-based microbicides need to be thoroughly re-evaluated. In this review, the in vitro toxicities; in vivo safety profiles; and in vitro, ex vivo, and in vivo antiviral activities of CGs are summarized according to the study volume of their target viruses, which include human immunodeficiency virus, herpesviruses, respiratory viruses, human papillomavirus, dengue virus, and other viruses along with a description of their antiviral modes of action and development of antiviral resistance. This evaluation of the strengths and weaknesses of CGs will help provide future research directions that may lead to the successful development of CG-based antimicrobial prophylactics.
Collapse
Affiliation(s)
- Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Korea
| |
Collapse
|
9
|
Inic-Kanada A, Stein E, Stojanovic M, Schuerer N, Ghasemian E, Filipovic A, Marinkovic E, Kosanovic D, Barisani-Asenbauer T. Effects of iota-carrageenan on ocular Chlamydia trachomatis infection in vitro and in vivo. JOURNAL OF APPLIED PHYCOLOGY 2018; 30:2601-2610. [PMID: 30147240 PMCID: PMC6096786 DOI: 10.1007/s10811-018-1435-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 05/11/2023]
Abstract
Ocular chlamydial infections with the ocular serovars A, B, Ba, and C of Chlamydia trachomatis represent the world's leading cause of infectious blindness. Carrageenans are naturally occurring, sulfated polysaccharides generally considered safe for food and topical applications. Carrageenans can inhibit infection caused by a variety of viruses and bacteria. To investigate whether iota-carrageenan (I-C) isolated from the red alga Chondrus crispus could prevent ocular chlamydial infection, we assessed if targeted treatment of the conjunctival mucosa with I-C affects chlamydial attachment, entry, and replication in the host cell. Immortalized human conjunctival epithelial cells were treated with I-C prior to C. trachomatis infection and analyzed by flow cytometry and immunofluorescence microscopy. In vivo effects were evaluated in an ocular guinea pig inclusion conjunctivitis model. Ocular pathology was graded daily, and chlamydial clearance was investigated. Our study showed that I-C reduces the infectivity of C. trachomatis in vitro. In vivo results showed a slight reduced ocular pathology and significantly less shedding of infectious elementary bodies by infected animals. Our results indicate that I-C could be a promising agent to reduce the transmission of ocular chlamydial infection and opens perspectives to develop prophylactic approaches to block C. trachomatis entry into the host cell.
Collapse
Affiliation(s)
- Aleksandra Inic-Kanada
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Elisabeth Stein
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Marijana Stojanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Nadine Schuerer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ehsan Ghasemian
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ana Filipovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Emilija Marinkovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Dejana Kosanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Talin Barisani-Asenbauer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| |
Collapse
|
10
|
Shi Q, Wang A, Lu Z, Qin C, Hu J, Yin J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr Res 2017; 453-454:1-9. [PMID: 29102716 DOI: 10.1016/j.carres.2017.10.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/29/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Marine polysaccharides are attracting increasing attention in medical and pharmaceutical development because of their important biological properties. The seaweed polysaccharides have now become a rich resource of potential antiviral drugs due to their antiviral activities against various viruses. The structural diversity and complexity of marine polysaccharides and their derivatives contribute to their antiviral activities in different phases of many different viral infection processes. This review mainly introduces the different types of seaweed polysaccharides and their derivatives with potent antiviral activities. Moreover, the antiviral mechanisms and medical applications of certain marine polysaccharides from seaweeds are also demonstrated.
Collapse
Affiliation(s)
- Qimin Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China
| | - Anjian Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China
| | - Zhonghua Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China; Wuxi No.5 People's Hospital, Xingyuan Rd. 88, Wuxi 214002, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, 214122, Wuxi, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China.
| |
Collapse
|
11
|
Ourique GS, Vianna JF, Neto JXL, Oliveira JIN, Mauriz PW, Vasconcelos MS, Caetano EWS, Freire VN, Albuquerque EL, Fulco UL. A quantum chemistry investigation of a potential inhibitory drug against the dengue virus. RSC Adv 2016. [DOI: 10.1039/c6ra10121f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The total interaction energy of the inhibitor Bz-nKRR-H bound to a serine protease of the dengue virus is mainly due to the action of Asn152, Met49, Tyr161, Asp129 and Gly151 (Met84, Met75, Asp81, Asp79 and Asp80) residues at the NS3 (NS2B) subunit.
Collapse
Affiliation(s)
- G. S. Ourique
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. F. Vianna
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - P. W. Mauriz
- Departamento de Física
- Instituto Federal de Educação
- Ciência e Tecnologia do Maranhão
- São Luís
- Brazil
| | - M. S. Vasconcelos
- Escola de Ciência e Tecnologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - E. W. S. Caetano
- Instituto Federal de Educação
- Ciência e Tecnologia do Ceará
- Fortaleza
- Brazil
| | - V. N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - E. L. Albuquerque
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - U. L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|