1
|
Wei H, Dong X, You Y, Hai B, Duran RCD, Wu X, Kharas N, Wu JQ. OLIG2 regulates lncRNAs and its own expression during oligodendrocyte lineage formation. BMC Biol 2021; 19:132. [PMID: 34172044 PMCID: PMC8235854 DOI: 10.1186/s12915-021-01057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oligodendrocytes, responsible for axon ensheathment, are critical for central nervous system (CNS) development, function, and diseases. OLIG2 is an important transcription factor (TF) that acts during oligodendrocyte development and performs distinct functions at different stages. Previous studies have shown that lncRNAs (long non-coding RNAs; > 200 bp) have important functions during oligodendrocyte development, but their roles have not been systematically characterized and their regulation is not yet clear. RESULTS We performed an integrated study of genome-wide OLIG2 binding and the epigenetic modification status of both coding and non-coding genes during three stages of oligodendrocyte differentiation in vivo: neural stem cells (NSCs), oligodendrocyte progenitor cells (OPCs), and newly formed oligodendrocytes (NFOs). We found that 613 lncRNAs have OLIG2 binding sites and are expressed in at least one cell type, which can potentially be activated or repressed by OLIG2. Forty-eight of them have increased expression in oligodendrocyte lineage cells. Predicting lncRNA functions by using a "guilt-by-association" approach revealed that the functions of these 48 lncRNAs were enriched in "oligodendrocyte development and differentiation." Additionally, bivalent genes are known to play essential roles during embryonic stem cell differentiation. We identified bivalent genes in NSCs, OPCs, and NFOs and found that some bivalent genes bound by OLIG2 are dynamically regulated during oligodendrocyte development. Importantly, we unveiled a previously unknown mechanism that, in addition to transcriptional regulation via DNA binding, OLIG2 could self-regulate through the 3' UTR of its own mRNA. CONCLUSIONS Our studies have revealed the missing links in the mechanisms regulating oligodendrocyte development at the transcriptional level and after transcription. The results of our research have improved the understanding of fundamental cell fate decisions during oligodendrocyte lineage formation, which can enable insights into demyelination diseases and regenerative medicine.
Collapse
Affiliation(s)
- Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Xiaomin Dong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Bo Hai
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L., Mexico
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA
| | - Natasha Kharas
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
2
|
Magri L, Gacias M, Wu M, Swiss VA, Janssen WG, Casaccia P. c-Myc-dependent transcriptional regulation of cell cycle and nucleosomal histones during oligodendrocyte differentiation. Neuroscience 2014; 276:72-86. [PMID: 24502923 DOI: 10.1016/j.neuroscience.2014.01.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/17/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) have the ability to divide or to growth arrest and differentiate into myelinating oligodendrocytes in the developing brain. Due to their high number and the persistence of their proliferative capacity in the adult brain, OPCs are being studied as potential targets for myelin repair and also as a potential source of brain tumors. This study addresses the molecular mechanisms regulating the transcriptional changes occurring at the critical transition between proliferation and cell cycle exit in cultured OPCs. Using bioinformatic analysis of existing datasets, we identified c-Myc as a key transcriptional regulator of this transition and confirmed direct binding of this transcription factor to identified target genes using chromatin immunoprecipitation. The expression of c-Myc was elevated in proliferating OPCs, where it also bound to the promoter of genes involved in cell cycle regulation (i.e. Cdc2) or chromosome organization (i.e. H2afz). Silencing of c-Myc was associated with decreased histone acetylation at target gene promoters and consequent decrease of gene transcripts. c-Myc silencing also induced a global increase of repressive histone methylation and premature peripheral nuclear chromatin compaction while promoting the progression towards differentiation. We conclude that c-Myc is an important modulator of the transition between proliferation and differentiation of OPCs, although its decrease is not sufficient to induce progression into a myelinating phenotype.
Collapse
Affiliation(s)
- L Magri
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, United States
| | - M Gacias
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, United States
| | - M Wu
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, United States
| | - V A Swiss
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, United States
| | - W G Janssen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, United States
| | - P Casaccia
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, United States; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY, United States.
| |
Collapse
|
3
|
Targeted overexpression of a golli-myelin basic protein isoform to oligodendrocytes results in aberrant oligodendrocyte maturation and myelination. ASN Neuro 2009; 1:AN20090029. [PMID: 19715557 PMCID: PMC2785512 DOI: 10.1042/an20090029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recently, several in vitro studies have shown that the golli–myelin basic proteins regulate Ca2+ homoeostasis in OPCs (oligodendrocyte precursor cells) and immature OLs (oligodendrocytes), and that a number of the functions of these cells are affected by cellular levels of the golli proteins. To determine the influence of golli in vivo on OL development and myelination, a transgenic mouse was generated in which the golli isoform J37 was overexpressed specifically within OLs and OPCs. The mouse, called JOE (J37-overexpressing), is severely hypomyelinated between birth and postnatal day 50. During this time, it exhibits severe intention tremors that gradually abate at later ages. After postnatal day 50, ultrastructural studies and Northern and Western blot analyses indicate that myelin accumulates in the brain, but never reaches normal levels. Several factors appear to underlie the extensive hypomyelination. In vitro and in vivo experiments indicate that golli overexpression causes a significant delay in OL maturation, with accumulation of significantly greater numbers of pre-myelinating OLs that fail to myelinate axons during the normal myelinating period. Immunohistochemical studies with cell death and myelin markers indicate that JOE OLs undergo a heightened and extended period of cell death and are unable to effectively myelinate until 2 months after birth. The results indicate that increased levels of golli in OPC/OLs delays myelination, causing significant cell death of OLs particularly in white matter tracts. The results provide in vivo evidence for a significant role of the golli proteins in the regulation of maturation of OLs and normal myelination.
Collapse
|
4
|
Dugas JC, Tai YC, Speed TP, Ngai J, Barres BA. Functional genomic analysis of oligodendrocyte differentiation. J Neurosci 2006; 26:10967-83. [PMID: 17065439 PMCID: PMC6674672 DOI: 10.1523/jneurosci.2572-06.2006] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
To better understand the molecular mechanisms governing oligodendrocyte (OL) differentiation, we have used gene profiling to quantitatively analyze gene expression in synchronously differentiating OLs generated from pure oligodendrocyte precursor cells in vitro. By comparing gene expression in these OLs to OLs generated in vivo, we discovered that the program of OL differentiation can progress normally in the absence of heterologous cell-cell interactions. In addition, we found that OL differentiation was unexpectedly prolonged and occurred in at least two sequential stages, each characterized by changes in distinct complements of transcription factors and myelin proteins. By disrupting the normal dynamic expression patterns of transcription factors regulated during OL differentiation, we demonstrated that these sequential stages of gene expression can be independently controlled. We also uncovered several genes previously uncharacterized in OLs that encode transmembrane, secreted, and cytoskeletal proteins that are as highly upregulated as myelin genes during OL differentiation. Last, by comparing genomic loci associated with inherited increased risk of multiple sclerosis (MS) to genes regulated during OL differentiation, we identified several new positional candidate genes that may contribute to MS susceptibility. These findings reveal a previously unexpected complexity to OL differentiation and suggest that an intrinsic program governs successive phases of OL differentiation as these cells extend and align their processes, ensheathe, and ultimately myelinate axons.
Collapse
Affiliation(s)
- Jason C Dugas
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|