1
|
da Cunha Germano BC, de Morais LCC, Idalina Neta F, Fernandes ACL, Pinheiro FI, do Rego ACM, Araújo Filho I, de Azevedo EP, de Paiva Cavalcanti JRL, Guzen FP, Cobucci RN. Vitamin E and Its Molecular Effects in Experimental Models of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:11191. [PMID: 37446369 DOI: 10.3390/ijms241311191] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
With the advancement of in vivo studies and clinical trials, the pathogenesis of neurodegenerative diseases has been better understood. However, gaps still need to be better elucidated, which justifies the publication of reviews that explore the mechanisms related to the development of these diseases. Studies show that vitamin E supplementation can protect neurons from the damage caused by oxidative stress, with a positive impact on the prevention and progression of neurodegenerative diseases. Thus, this review aims to summarize the scientific evidence of the effects of vitamin E supplementation on neuroprotection and on neurodegeneration markers in experimental models. A search for studies published between 2000 and 2023 was carried out in the PubMed, Web of Science, Virtual Health Library (BVS), and Embase databases, in which the effects of vitamin E in experimental models of neurodegeneration were investigated. A total of 5669 potentially eligible studies were identified. After excluding the duplicates, 5373 remained, of which 5253 were excluded after checking the titles, 90 articles after reading the abstracts, and 11 after fully reviewing the manuscripts, leaving 19 publications to be included in this review. Experiments with in vivo models of neurodegenerative diseases demonstrated that vitamin E supplementation significantly improved memory, cognition, learning, motor function, and brain markers associated with neuroregeneration and neuroprotection. Vitamin E supplementation reduced beta-amyloid (Aβ) deposition and toxicity in experimental models of Alzheimer's disease. In addition, it decreased tau-protein hyperphosphorylation and increased superoxide dismutase and brain-derived neurotrophic factor (BDNF) levels in rodents, which seems to indicate the potential use of vitamin E in preventing and delaying the progress of degenerative lesions in the central nervous system.
Collapse
Affiliation(s)
- Bianca Caroline da Cunha Germano
- Postgraduate Program in Science Applied to Women's Health, Federal University of Rio Grande do Norte (UFRN), Natal 59072-970, Brazil
| | - Lara Cristina Carlos de Morais
- Postgratuate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Francisca Idalina Neta
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Amélia Carolina Lopes Fernandes
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Francisco Irochima Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | | | - Irami Araújo Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - Eduardo Pereira de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - José Rodolfo Lopes de Paiva Cavalcanti
- Postgratuate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
| | - Fausto Pierdona Guzen
- Postgratuate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró 59607-360, Brazil
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
| | - Ricardo Ney Cobucci
- Postgraduate Program in Science Applied to Women's Health, Federal University of Rio Grande do Norte (UFRN), Natal 59072-970, Brazil
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Medical School, Health School, Potiguar University (UnP), Natal 59056-000, Brazil
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal 59078-900, Brazil
| |
Collapse
|
2
|
Tempol and silymarin rescue from zinc-induced degeneration of dopaminergic neurons through modulation of oxidative stress and inflammation. Mol Cell Biochem 2022:10.1007/s11010-022-04620-z. [PMID: 36562918 DOI: 10.1007/s11010-022-04620-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Oxidative stress and inflammation are the key players in the toxic manifestation of sporadic Parkinson's disease and zinc (Zn)-induced dopaminergic neurodegeneration. A synthetic superoxide dismutase (SOD) mimetic, tempol, and a naturally occurring antioxidant, silymarin protect against oxidative stress-mediated damage. The study intended to explore the effects of tempol and silymarin against Zn-induced dopaminergic neurodegeneration. Exposure to Zn produced neurobehavioral deficits and striatal dopamine depletion. Zn reduced glutathione content and glutathione-S-transferase activity and increased lipid peroxidation, superoxide dismutase activity, and level of pro-inflammatory mediators [nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6)]. Zn also attenuated the expression of tyrosine hydoxylase (TH), vesicular monoamine transporter 2 (VMAT-2), mitochondrial B-cell lymphoma-2 (Bcl-2), and procaspase-3 and 9 proteins and number of TH-positive neurons. Conversely, Zn elevated the expression of dopamine transporter (DAT) and mitochondrial Bcl-2-associated X (Bax) protein along with mitochondrial cytochrome c release. Administration of tempol significantly alleviated Zn-induced motor impairments, dopamine depletion, reduction in TH expression, and loss of TH-positive neurons similar to silymarin. Silymarin mitigated Zn-induced oxidative stress and inflammation and restored the expression of dopamine transporters and levels of pro-apoptotic proteins akin to tempol. The results demonstrate that both tempol and silymarin protect against Zn-induced dopaminergic neuronal loss through the suppression of oxidative stress and inflammation.
Collapse
|
3
|
Boshtam M, Kouhpayeh S, Amini F, Azizi Y, Najaflu M, Shariati L, Khanahmad H. Anti-inflammatory effects of apocynin: a narrative review of the evidence. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1990136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, Erythron Genetics and Pathobiology Laboratory, Isfahan, Iran
| | - Farahnaz Amini
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yadollah Azizi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Najaflu
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied physiology research center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Aromatic-Turmerone Analogs Protect Dopaminergic Neurons in Midbrain Slice Cultures through Their Neuroprotective Activities. Cells 2021; 10:cells10051090. [PMID: 34063571 PMCID: PMC8147616 DOI: 10.3390/cells10051090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. The inflammatory activation of microglia participates in dopaminergic neurodegeneration in PD. Therefore, chemicals that inhibit microglial activation are considered to have therapeutic potential for PD. Aromatic (ar)-turmerone is a main component of turmeric oil extracted from Curcuma longa and has anti-inflammatory activity in cultured microglia. The aims of the present study are (1) to investigate whether naturally occurring S-enantiomer of ar-turmerone (S-Tur) protects dopaminergic neurons in midbrain slice cultures and (2) to examine ar-turmerone analogs that have higher activities than S-Tur in inhibiting microglial activation and protecting dopaminergic neurons. R-enantiomer (R-Tur) and two analogs showed slightly higher anti-inflammatory effects in microglial BV2 cells. S- and R-Tur and these two analogs reversed dopaminergic neurodegeneration triggered by microglial activation in midbrain slice cultures. Unexpectedly, this neuroprotection was independent of the inhibition of microglial activation. Additionally, two analogs more potently inhibited dopaminergic neurodegeneration triggered by a neurotoxin, 1-methyl-4-phenylpyridinium, than S-Tur. Taken together, we identified two ar-turmerone analogs that directly and potently protected dopaminergic neurons. An investigation using dopaminergic neuronal precursor cells suggested the possible involvement of nuclear factor erythroid 2-related factor 2 in this neuroprotection.
Collapse
|
5
|
Rahim NS, Lim SM, Mani V, Hazalin NAMN, Majeed ABA, Ramasamy K. Virgin Coconut Oil-Induced Neuroprotection in Lipopolysaccharide-Challenged Rats is Mediated, in Part, Through Cholinergic, Anti-Oxidative and Anti-Inflammatory Pathways. J Diet Suppl 2020; 18:655-681. [PMID: 33962540 DOI: 10.1080/19390211.2020.1830223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Neuroinflammation is associated with neuronal cell death and could lead to chronic neurodegeneration. This study investigated the neuroprotective potential of virgin coconut oil (VCO) against lipopolysaccharide (LPS)-induced cytotoxicity of neuroblastoma SK-N-SH cells. The findings were validated using Wistar rats, which were fed with 1-10 g/kg VCO for 31 days, exposed to LPS (0.25 mg/kg) and subjected to the Morris Water Maze Test. Brain homogenate was subjected to biochemical analyses and gene expression studies. α-Tocopherol (α-T; 150 mg/kg) served as the positive control. VCO (100 µg/mL) significantly (p < 0.01) improved SK-N-SH viability (+57%) and inhibited reactive oxygen species (-31%) in the presence of LPS. VCO (especially 10 g/kg) also significantly (p < 0.05) enhanced spatial memory of LPS-challenged rats. Brain homogenate of VCO-fed rats was presented with increased acetylcholine (+33%) and reduced acetylcholinesterase (-43%). The upregulated antioxidants may have reduced neuroinflammation [malondialdehyde (-51%), nitric oxide (-49%), Cox-2 (-64%) and iNos (-63%)] through upregulation of IL-10 (+30%) and downregulation of IL-1β (-65%) and Interferon-γ (-25%). There was also reduced expression of Bace-1 (-77%). VCO-induced neuroprotection, which was comparable to α-T, could be mediated, in part, through inflammatory, cholinergic and amyloidogenic pathways.
Collapse
Affiliation(s)
- Nur Syafiqah Rahim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia.,Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau, Perlis, Malaysia
| | - Siong Meng Lim
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Nurul Aqmar Mohamad Nor Hazalin
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abu Bakar Abdul Majeed
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
6
|
LPS-Induced Low-Grade Inflammation Increases Hypothalamic JNK Expression and Causes Central Insulin Resistance Irrespective of Body Weight Changes. Int J Mol Sci 2017; 18:ijms18071431. [PMID: 28677618 PMCID: PMC5535922 DOI: 10.3390/ijms18071431] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 01/26/2023] Open
Abstract
Metabolic endotoxemia contributes to low-grade inflammation in obesity, which causes insulin resistance due to the activation of intracellular proinflammatory pathways, such as the c-Jun N-terminal Kinase (JNK) cascade in the hypothalamus and other tissues. However, it remains unclear whether the proinflammatory process precedes insulin resistance or it appears because of the development of obesity. Hypothalamic low-grade inflammation was induced by prolonged lipopolysaccharide (LPS) exposure to investigate if central insulin resistance is induced by an inflammatory stimulus regardless of obesity. Male Wistar rats were treated with single (1 LPS) or repeated injections (6 LPS) of LPS (100 μg/kg, IP) to evaluate the phosphorylation of the insulin receptor substrate-1 (IRS1), Protein kinase B (AKT), and JNK in the hypothalamus. Single LPS increased the expression of pIRS1, pAKT, and pJNK, whereas the repeated LPS treatment failed to recruit pIRS1 and pAKT. The 6 LPS treated rats showed increased total JNK and pJNK. The 6 LPS rats became unresponsive to the hypophagic effect induced by central insulin administration (12 μM/5 μL, ICV). Prolonged exposure to LPS (24 h) impaired the insulin-induced AKT phosphorylation and the translocation of the transcription factor forkhead box protein O1 (FoxO1) from the nucleus to the cytoplasm of the cultured hypothalamic GT1-7 cells. Central administration of the JNK inhibitor (20 μM/5 μL, ICV) restored the ability of insulin to phosphorylate IRS1 and AKT in 6 LPS rats. The present data suggest that an increased JNK activity in the hypothalamus underlies the development of insulin resistance during prolonged exposure to endotoxins. Our study reveals that weight gain is not mandatory for the development of hypothalamic insulin resistance and the blockade of proinflammatory pathways could be useful for restoring the insulin signaling during prolonged low-grade inflammation as seen in obesity.
Collapse
|
7
|
Derradjia A, Alanazi H, Park HJ, Djeribi R, Semlali A, Rouabhia M. α-tocopherol decreases interleukin-1β and -6 and increases human β-defensin-1 and -2 secretion in human gingival fibroblasts stimulated with Porphyromonas gingivalis
lipopolysaccharide. J Periodontal Res 2015. [DOI: 10.1111/jre.12308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- A. Derradjia
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; Québec QC Canada
- Groupe de Recherche sur les Biofilms et la Biocontamination des Matériaux; Faculté des Sciences; Université d'Annaba; Annaba Algeria
| | - H. Alanazi
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; Québec QC Canada
| | - H. J. Park
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; Québec QC Canada
| | - R. Djeribi
- Groupe de Recherche sur les Biofilms et la Biocontamination des Matériaux; Faculté des Sciences; Université d'Annaba; Annaba Algeria
| | - A. Semlali
- Department of Biochemistry; College of Science; King Saud University; Riyadh Saudi Arabia
| | - M. Rouabhia
- Groupe de Recherche en Écologie Buccale; Faculté de Médecine Dentaire; Université Laval; Québec QC Canada
| |
Collapse
|
8
|
Ji FT, Liang JJ, Miao LP, Wu Q, Cao MH. Propofol post-conditioning protects the blood brain barrier by decreasing matrix metalloproteinase-9 and aquaporin-4 expression and improves the neurobehavioral outcome in a rat model of focal cerebral ischemia-reperfusion injury. Mol Med Rep 2015; 12:2049-55. [PMID: 25849432 DOI: 10.3892/mmr.2015.3585] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Propofol, an intravenous anesthetic, inhibits neuronal apoptosis induced by ischemic stroke, protects the brain from ischemia/reperfusion injury and improves neuronal function. However, whether propofol is able to protect the blood brain barrier (BBB) and the underlying mechanisms have remained to be elucidated. In the present study, a rat model of cerebral ischemia/reperfusion was established, using a thread embolism to achieve middle cerebral artery occlusion. Rats were treated with propofol (propofol post-conditioning) or physiological saline (control) administered by intravenous injection 30 min following reperfusion. Twenty-four hours following reperfusion, neurobehavioral manifestations were assessed. The levels of cephaloedema, damage to the BBB and expression levels of matrix metalloproteinase-9 (MMP-9), aquaporin-4 (AQP-4) and phosphorylated c-Jun N-terminal kinase (pJNK) were determined in order to evaluate the effects of propofol on the BBB. In comparison to the cerebral ischemia/reperfusion group, the levels of brain water content and Evans blue content, as well as the expression levels of MMP-9, AQP-4 and pJNK were significantly reduced in the propofol post-conditioning group. These results indicated that propofol post-conditioning improved the neurobehavioral manifestations and attenuated the BBB damage and cephaloedema induced following cerebral ischemia/reperfusion. This effect may be due to the inhibition of MMP-9 and AQP-4 expression, and the concurrent decrease in JNK phosphorylation.
Collapse
Affiliation(s)
- Feng-Tao Ji
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Jian-Jun Liang
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Li-Ping Miao
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Qiang Wu
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ming-Hui Cao
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital of Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
9
|
Lim JY, Sul D, Hwang BY, Hwang KW, Yoo KY, Park SY. Suppression of LPS-induced inflammatory responses by inflexanin B in BV2 microglial cells. Can J Physiol Pharmacol 2013; 91:141-8. [PMID: 23458198 DOI: 10.1139/cjpp-2012-0242] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Microglia are a type of resident macrophage that functions as an inflammation modulator in the central nervous system. Over-activation of microglia by a range of stimuli disrupts the physiological homeostasis of the brain, and induces inflammatory response and degenerative processes, such as those implicated in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, we investigated the possible anti-inflammatory mechanisms of inflexanin B in murine microglial BV2 cells. Lipopolysaccharide (LPS) activated BV2 cells and induced the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and cytokines (interleukins-1β and -6, and tumour necrosis factor α). The LPS-induced production of pro-inflammatory mediators was associated with the enhancement of nuclear factor-kappaB (NF-κB) nuclear translocation and the activation of mitogen-activated protein kinase (MAPK) including ERK1/2 and JNK. Conversely, pretreatment of cells with inflexanin B (10 and 20 μg/mL) significantly reduced the production of pro-inflammatory mediators. This was accompanied with the reduced nuclear translocation of NF-κB and reduced activation of MAPKs. These results suggest that inflexanin B attenuated the LPS-induced inflammatory process by inhibiting the activation of NF-κB and MAPKs.
Collapse
Affiliation(s)
- Ji-Youn Lim
- Environmental Toxico-Genomic & Proteomic Center, College of Medicine, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Nishio K, Horie M, Akazawa Y, Shichiri M, Iwahashi H, Hagihara Y, Yoshida Y, Niki E. Attenuation of lipopolysaccharide (LPS)-induced cytotoxicity by tocopherols and tocotrienols. Redox Biol 2013; 1:97-103. [PMID: 24024142 PMCID: PMC3757666 DOI: 10.1016/j.redox.2012.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 01/23/2023] Open
Abstract
Lipopolysaccharide (LPS) induces host inflammatory responses and tissue injury and has been implicated in the pathogenesis of various age-related diseases such as acute respiratory distress syndrome, vascular diseases, and periodontal disease. Antioxidants, particularly vitamin E, have been shown to suppress oxidative stress induced by LPS, but the previous studies with different vitamin E isoforms gave inconsistent results. In the present study, the protective effects of α- and γ-tocopherols and α- and γ-tocotrienols on the oxidative stress induced by LPS against human lung carcinoma A549 cells were studied. They suppressed intracellular reactive oxygen formation, lipid peroxidation, induction of inflammatory mediator cytokines, and cell death. Tocopherols were incorporated into cultured cells much slower than tocotrienols but could suppress LPS-induced oxidative stress at much lower intracellular concentration than tocotrienols. Considering the bioavailability, it was concluded that α-tocopherol may exhibit the highest protective capacity among the vitamin E isoforms against LPS-induced oxidative stress.
Collapse
Key Words
- DCFH, Dichlorofluorescein
- DPPP, Diphenyl-1-pyrenylphosphine
- LPS, Lipopolysaccharide
- Lipid peroxidation
- Lipopolysaccharide (LPS)
- MTT, 3-[4,5-dimethylthiazol-2-yl]2,5-dipheyltetrazolium bromide
- NF-κB, Nuclear factor-kappaB
- Oxidative stress
- ROS, Reactive oxygen species
- SP-D, Pulmonary surfactant protein D
- TNF-α, Tumor necrosis factor α
- Toc, Tocopherol
- Toc3, Tocotrienol
- Tocopherol
- Tocotrienol
- Vitamin E
Collapse
Affiliation(s)
- Keiko Nishio
- Health Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Ikeda 563-8577, Japan
| | | | | | | | | | | | | | - Etsuo Niki
- Health Research Institute, National Institute of Advanced Industrial Science & Technology (AIST), Ikeda 563-8577, Japan
| |
Collapse
|
11
|
Tovilovic G, Zogovic N, Harhaji-Trajkovic L, Misirkic-Marjanovic M, Janjetovic K, Vucicevic L, Kostic-Rajacic S, Schrattenholz A, Isakovic A, Soskic V, Trajkovic V. Arylpiperazine Dopamineric Ligands Protect Neuroblastoma Cells from Nitric Oxide (NO)-Induced Mitochondrial Damage and Apoptosis. ChemMedChem 2012; 7:495-508. [DOI: 10.1002/cmdc.201100537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Indexed: 01/26/2023]
|
12
|
Simonyi A, Serfozo P, Lehmidi TM, Cui J, Gu Z, Lubahn DB, Sun AY, Sun GY. The neuroprotective effects of apocynin. Front Biosci (Elite Ed) 2012; 4:2183-93. [PMID: 22202030 DOI: 10.2741/535] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recognition of health benefits of phytomedicines and herbal supplements lead to an increased interest to understand the cellular and molecular basis of their biological activities. Apocynin (4-hydroxy-3-methoxy-acetophenone) is a constituent of the Himalayan medicinal herb Picrorhiza kurroa which is regarded as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, a superoxide-producing enzyme. NADPH oxidase appears to be especially important in the modulation of redox-sensitive signaling pathways and also has been implicated in neuronal dysfunction and degeneration, and neuroinflammmation in diseases ranging from stroke, Alzheimer's and Parkinson's diseases to psychiatric disorders. In this review, we aim to give an overview of current literature on the neuroprotective effects of apocynin in the prevention and treatment of neurodegenerative disorders. Particular attention is given to in vivo studies.
Collapse
Affiliation(s)
- Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cheng J, Wang F, Yu DF, Wu PF, Chen JG. The cytotoxic mechanism of malondialdehyde and protective effect of carnosine via protein cross-linking/mitochondrial dysfunction/reactive oxygen species/MAPK pathway in neurons. Eur J Pharmacol 2010; 650:184-94. [PMID: 20868662 DOI: 10.1016/j.ejphar.2010.09.033] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/25/2010] [Accepted: 09/14/2010] [Indexed: 11/25/2022]
Abstract
The accumulation of malondialdehyde (MDA), a lipid peroxidation by-product that has been used as an indicator of cellular oxidation status, is significantly increased in many neurological diseases such as brain ischemia/reperfusion, Alzheimer's disease and Parkinson's disease in vivo. In the present study, we found that MDA treatment in vitro reduced cortical neuronal viability in a time- and dose-dependent manner and induced cellular apoptosis as well as necrosis simultaneously. Furthermore, exposure to MDA led to accumulation of intracellular reactive oxygen species, dysfunction of mitochondria (denoted by the loss of mitochondrial transmembrane potential (Δψm)) and activation of JNK and ERK. Carnosine exhibited better protection against MDA-induced cell injury than antioxidant N-acetyl-cysteine (NAC) with its multi-potency, which alleviated MDA-induced protein cross-linking, Δψm decrease, reactive oxygen species burst, JNK and ERK activation. In conclusion, our results suggest that MDA induced cell injury in vitro via protein cross-linking and successive mitochondrial dysfunction, and the activation of reactive oxygen species-dependent MAPK signaling pathway. Carnosine alleviated all these alterations induced by MDA, but NAC merely inhibited Bcl-2 family-related activation of JNK and ERK. These results prompt the possibility that carnosine, but not other conventional antioxidants, can protect neurons against MDA-induced injury through decomposition of protein cross-linking toxicity and may serve as a novel agent in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin Cheng
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | | | | | | |
Collapse
|
14
|
Li XZ, Bai LM, Yang YP, Luo WF, Hu WD, Chen JP, Mao CJ, Liu CF. Effects of IL-6 secreted from astrocytes on the survival of dopaminergic neurons in lipopolysaccharide-induced inflammation. Neurosci Res 2009; 65:252-8. [PMID: 19647022 DOI: 10.1016/j.neures.2009.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/16/2009] [Accepted: 07/21/2009] [Indexed: 11/26/2022]
Abstract
The role of astrocytes in microglia-induced neuronal death remains controversial. In this study, astrocytes and astrocyte-derived conditioned media (ACM) supported the survival of dopaminergic neurons, and the former was more effective than the latter. In the presence of astrocytes, low concentrations of LPS enhanced the survival of dopaminergic neurons, while high concentrations attenuated survival. LPS dramatically induced astrocytes to secrete IL-6 in a dose-dependent manner with no effect on secretion of GDNF. Neuron-astrocyte cultures had highest secretion of GDNF, followed by ACM-treated neuron-enriched cultures. After neuron-astrocyte cultures treated with IL-6-neutralizing antibody, both effects of the enhanced and attenuated survival of dopaminergic neurons were abolished. Our results indicate that astrocytes play a protective role in the LPS-induced damage of dopaminergic neurons in certain circumstances, and the interaction between astrocytes and dopaminergic neurons may enhance the protective effect of astrocytes. Suitable activation of astrocytes increases the protective effect while excessive activation attenuates it, and IL-6 might mediate this dual action. The underlying mechanisms related to the secretion of GDNF and proinflammatory factors warrant further investigation.
Collapse
Affiliation(s)
- Xue-zhong Li
- Department of Neurology, Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kurauchi Y, Hisatsune A, Isohama Y, Katsuki H. Nitric oxide-cyclic GMP signaling pathway limits inflammatory degeneration of midbrain dopaminergic neurons: cell type-specific regulation of heme oxygenase-1 expression. Neuroscience 2008; 158:856-66. [PMID: 18996444 DOI: 10.1016/j.neuroscience.2008.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/18/2008] [Accepted: 10/14/2008] [Indexed: 11/17/2022]
Abstract
Excessive production of nitric oxide (NO) by microglia is at least in part responsible for the pathogenesis of various neurodegenerative disorders including Parkinson disease, but at the same time NO may also play a distinct role as a signaling molecule such as an activator of soluble guanylyl cyclase. Here we investigated potential roles of the NO-soluble guanylyl cyclase-cyclic GMP signaling pathway in the regulation of dopaminergic neurodegeneration. Activation of microglia by interferon-gamma (IFN-gamma) followed by lipopolysaccharide (LPS) caused dopaminergic cell death in rat midbrain slice cultures, which was dependent on NO production. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a soluble guanylyl cyclase inhibitor, as well as KT5823, an inhibitor of cyclic GMP-dependent protein kinase, exacerbated dopaminergic cell death induced by IFN-gamma/LPS. Conversely, 8-bromo-cyclic GMP attenuated IFN-gamma/LPS cytotoxicity on dopaminergic neurons. Notably, although heme oxygenase-1 (HO-1) was expressed prominently in cells other than dopaminergic neurons in control cultures, robust expression of HO-1 was induced in surviving dopaminergic neurons challenged with IFN-gamma/LPS. ODQ and KT5823 decreased, whereas 8-bromo-cyclic GMP increased, the number of dopaminergic neurons expressing HO-1 after IFN-gamma/LPS challenge, without parallel changes in HO-1 expression in other cell populations. An NO donor 3-(4-morpholinyl)sydnonimine hydrochloride also induced HO-1 expression in dopaminergic neurons, which was abolished by ODQ and augmented by 8-bromo-cyclic GMP. Moreover, IFN-gamma/LPS-induced dopaminergic cell death was augmented by zinc protoporphyrin IX, an HO-1 inhibitor. The NO donor cytotoxicity on dopaminergic neurons was also augmented by ODQ and zinc protoporphyrin IX. These results indicate that the NO-cyclic GMP signaling pathway promotes the induction of HO-1 specifically in dopaminergic neurons, which acts as an endogenous protective system to limit inflammatory degeneration of this cell population.
Collapse
Affiliation(s)
- Y Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | |
Collapse
|
16
|
Sun AY, Wang Q, Simonyi A, Sun GY. Botanical phenolics and brain health. Neuromolecular Med 2008; 10:259-74. [PMID: 19191039 PMCID: PMC2682367 DOI: 10.1007/s12017-008-8052-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 10/02/2008] [Indexed: 12/16/2022]
Abstract
The high demand for molecular oxygen, the enrichment of polyunsaturated fatty acids in membrane phospholipids, and the relatively low abundance of antioxidant defense enzymes are factors rendering cells in the central nervous system (CNS) particularly vulnerable to oxidative stress. Excess production of reactive oxygen species (ROS) in the brain has been implicated as a common underlying factor for the etiology of a number of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. While ROS are generated by enzymatic and nonenzymatic reactions in the mitochondria and cytoplasm under normal conditions, excessive production under pathological conditions is associated with activation of Ca(2+)-dependent enzymes including proteases, phospholipases, nucleases, and alterations of signaling pathways which subsequently lead to mitochondrial dysfunction, release of inflammatory factors, and apoptosis. In recent years, there is considerable interest to investigate antioxidative and anti-inflammatory effects of phenolic compounds from different botanical sources. In this review, we describe oxidative mechanisms associated with AD, PD, and stroke, and evaluate neuroprotective effects of phenolic compounds, such as resveratrol from grape and red wine, curcumin from turmeric, apocynin from Picrorhiza kurroa, and epi-gallocatechin from green tea. The main goal is to provide a better understanding of the mode of action of these compounds and assess their use as therapeutics to ameliorate age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Albert Y. Sun
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211
| | - Qun Wang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65211
| | - Agnes Simonyi
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65211
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211
| |
Collapse
|
17
|
Xing B, Xin T, Hunter RL, Bing G. Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J Neuroinflammation 2008; 5:4. [PMID: 18205920 PMCID: PMC2254610 DOI: 10.1186/1742-2094-5-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 01/18/2008] [Indexed: 12/19/2022] Open
Abstract
Background Previous studies have suggested that peroxisome proliferator activated receptor-gamma (PPAR-γ)-mediated neuroprotection involves inhibition of microglial activation and decreased expression and activity of inducible nitric oxide synthase (iNOS); however, the underlying molecular mechanisms have not yet been well established. In the present study we explored: (1) the effect of the PPAR-γ agonist pioglitazone on lipopolysaccharide (LPS)-induced iNOS activity and nitric oxide (NO) generation by microglia; (2) the differential role of p38 mitogen-activated protein kinase (p38 MAPK), c-Jun NH(2)-terminal kinase (JNK), and phosphoinositide 3-kinase (PI3K) on LPS-induced NO generation; and (3) the regulation of p38 MAPK, JNK, and PI3K by pioglitazone. Methods Mesencephalic neuron-microglia mixed cultures, and microglia-enriched cultures were treated with pioglitazone and/or LPS. The protein levels of iNOS, p38 MAPK, JNK, PPAR-γ, PI3K, and protein kinase B (Akt) were measured by western blot. Different specific inhibitors of iNOS, p38MAPK, JNK, PI3K, and Akt were used in our experiment, and NO generation was measured using a nitrite oxide assay kit. Tyrosine hydroxylase (TH)-positive neurons were counted in mesencephalic neuron-microglia mixed cultures. Results Our results showed that pioglitazone inhibits LPS-induced iNOS expression and NO generation, and inhibition of iNOS is sufficient to protect dopaminergic neurons against LPS insult. In addition, inhibition of p38 MAPK, but not JNK, prevented LPS-induced NO generation. Further, and of interest, pioglitazone inhibited LPS-induced phosphorylation of p38 MAPK. Wortmannin, a specific PI3K inhibitor, enhanced p38 MAPK phosphorylation upon LPS stimulation of microglia. Elevations of phosphorylated PPAR-γ, PI3K, and Akt levels were observed with pioglitazone treatment, and inhibition of PI3K activity enhanced LPS-induced NO production. Furthermore, wortmannin prevented the inhibitory effect of pioglitazone on the LPS-induced NO increase. Conclusion We demonstrate that pioglitazone protects dopaminergic neurons against LPS insult at least via inhibiting iNOS expression and NO generation, which is potentially mediated via inhibition of p38 MAPK activity. In addition, the PI3K pathway actively participates in the negative regulation of LPS-induced NO production. Our findings suggest that PPAR-γ activation may involve differential regulation of p38 MAPK and of the PI3K/Akt pathway in the regulation of the inflammatory process.
Collapse
Affiliation(s)
- Bin Xing
- Department of Anatomy and Neurobiology, 310 Davis Mills Building, University of Kentucky, Chandler Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | | | | | | |
Collapse
|
18
|
Yatsushige H, Ostrowski RP, Tsubokawa T, Colohan A, Zhang JH. Role of c-Jun N-terminal kinase in early brain injury after subarachnoid hemorrhage. J Neurosci Res 2007; 85:1436-48. [PMID: 17410600 DOI: 10.1002/jnr.21281] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The c-Jun N-terminal kinase (JNK) is induced by cerebral ischemia and injurious blood components acutely after subarachnoid hemorrhage (SAH). We hypothesized that inhibition of JNK will prevent damage to the neurovascular unit in the early brain injury period after SAH. Ninety-nine male SD rats (300-350 g) were randomly assigned to sham, SAH, and SAH treated with JNK inhibitor groups. SAH was induced by endovascular perforation. The JNK inhibitor SP600125 was administered intraperitoneally at 1 hr before and 6 hr after SAH. At 24 hr after SAH, we observed increased phosphorylation of JNK and c-Jun. Signs of neurovascular damage were observed in the hemorrhagic brains; these included the increases of aquaporin (AQP)-1 expression and brain water content as well as enhanced matrix metalloproteinase (MMP)-9 activity, vascular collagen IV loss, increased VEGF tissue level, and Evans blue extravasation. The appearances of cleaved caspase-3 expression, TUNEL-positive cells, and apoptotic morphology in cerebral tissues were associated with neurological deficit after SAH. JNK inhibition prevented c-Jun phosphorylation and suppressed AQP1, MMP-9, VEGF, and caspase-3 activation, with concomitant diminution of neuronal injury, blood-brain barrier preservation, reduced brain swelling, and improved neurological deficit in rats after SAH. This study demonstrates a multitude of beneficial effects of JNK inhibition, including protection of the neurovascular unit in early brain injury after SAH.
Collapse
Affiliation(s)
- Hiroshi Yatsushige
- Department of Physiology, Loma Linda University, Loma Linda, California 92354, USA
| | | | | | | | | |
Collapse
|
19
|
Dey A, Cederbaum AI. Geldanamycin, an inhibitor of Hsp90 increases cytochrome P450 2E1 mediated toxicity in HepG2 cells through sustained activation of the p38MAPK pathway. Arch Biochem Biophys 2007; 461:275-86. [PMID: 17382893 PMCID: PMC1942044 DOI: 10.1016/j.abb.2007.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/06/2007] [Accepted: 02/07/2007] [Indexed: 01/02/2023]
Abstract
Cytochrome P450 2E1 (CYP2E1) can mediate reactive oxygen species (ROS) induced cell death through its catalytic processes. Heat shock protein 90 (Hsp90) is an important molecular chaperone which is essential for cellular integrity. We previously showed that inhibition of Hsp90 with Geldanamycin (GA), an inhibitor of Hsp90 increased CYP2E1 mediated toxicity in CYP2E1 over-expressing HepG2 cells (E47 cells) but not in C34-HepG2 cells devoid of CYP2E1 expression. The aim of the present study was to test the hypothesis that the potentiation of CYP2E1 toxicity in E47 cells with GA may involve changes in mitogen activated protein kinase signal transduction pathways. GA was toxic to E47 cells and SB203580, an inhibitor of p38 MAPK prevented this decrease in viability. The protective effects of SB203580 were effective only when SB203580 was added before GA treatment. GA activated p38 MAPK in E47 cells and this activation was an early and a sustained event. GA elevated ROS levels and lipid peroxidation and lowered GSH levels in E47 cells and these changes were blunted or prevented by treatment with SB203580. Apoptosis was increased by GA and prevented by pre-treatment with SB203580. The loss in mitochondrial membrane potential in E47 cells after GA treatment was also decreased significantly with SB203580 treatment. The activity and expression of CYP2E1 and Hsp90 levels were not altered by SB203580. In conclusion, the inhibition of Hsp90 with GA increases the toxicity of CYP2E1 in HepG2 cells through an early and sustained activation of the p38 MAPK pathway.
Collapse
Affiliation(s)
- Aparajita Dey
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|