1
|
Chen H, He Y, Chen S, Qi S, Shen J. Therapeutic targets of oxidative/nitrosative stress and neuroinflammation in ischemic stroke: Applications for natural product efficacy with omics and systemic biology. Pharmacol Res 2020; 158:104877. [PMID: 32407958 DOI: 10.1016/j.phrs.2020.104877] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Oxidative/nitrosative stress and neuroinflammation are critical pathological processes in cerebral ischemia-reperfusion injury, and their intimate interactions mediate neuronal damage, blood-brain barrier (BBB) damage and hemorrhagic transformation (HT) during ischemic stroke. We review current progress towards understanding the interactions of oxidative/nitrosative stress and inflammatory responses in ischemic brain injury. The interactions between reactive oxygen species (ROS)/reactive nitrogen species (RNS) and innate immune receptors such as TLR2/4, NOD-like receptor, RAGE, and scavenger receptors are crucial pathological mechanisms that amplify brain damage during cerebral ischemic injury. Furthermore, we review the current progress of omics and systematic biology approaches for studying complex network regulations related to oxidative/nitrosative stress and inflammation in the pathology of ischemic stroke. Targeting oxidative/nitrosative stress and neuroinflammation could be a promising therapeutic strategy for ischemic stroke treatment. We then review recent advances in discovering compounds from medicinal herbs with the bioactivities of simultaneously regulating oxidative/nitrosative stress and pro-inflammatory molecules for minimizing ischemic brain injury. These compounds include sesamin, baicalin, salvianolic acid A, 6-paradol, silymarin, apocynin, 3H-1,2-Dithiole-3-thione, (-)-epicatechin, rutin, Dl-3-N-butylphthalide, and naringin. We finally summarize recent developments of the omics and systematic biology approaches for exploring the molecular mechanisms and active compounds of Traditional Chinese Medicine (TCM) formulae with the properties of antioxidant and anti-inflammation for neuroprotection. The comprehensive omics and systematic biology approaches provide powerful tools for exploring therapeutic principles of TCM formulae and developing precision medicine for stroke treatment.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Yacong He
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Shuang Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Suhua Qi
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China; School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
2
|
Chen H, Chen X, Luo Y, Shen J. Potential molecular targets of peroxynitrite in mediating blood–brain barrier damage and haemorrhagic transformation in acute ischaemic stroke with delayed tissue plasminogen activator treatment. Free Radic Res 2018; 52:1220-1239. [PMID: 30468092 DOI: 10.1080/10715762.2018.1521519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| | - Xi Chen
- Department of Core Facility, the People’s Hospital of Bao-an Shenzhen, Shenzhen, PR China
- The 8th People’s Hospital of Shenzhen, the Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, PR China
| | - Yunhao Luo
- School of Chinese Medicine, the University of Hong Kong, PR China
| | - Jiangang Shen
- School of Chinese Medicine, the University of Hong Kong, PR China
- Shenzhen Institute of Research and Innovation (HKU-SIRI), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
3
|
Shekhar S, Cunningham MW, Pabbidi MR, Wang S, Booz GW, Fan F. Targeting vascular inflammation in ischemic stroke: Recent developments on novel immunomodulatory approaches. Eur J Pharmacol 2018; 833:531-544. [PMID: 29935175 DOI: 10.1016/j.ejphar.2018.06.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/02/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Ischemic stroke is a devastating and debilitating medical condition with limited therapeutic options. However, accumulating evidence indicates a central role of inflammation in all aspects of stroke including its initiation, the progression of injury, and recovery or wound healing. A central target of inflammation is disruption of the blood brain barrier or neurovascular unit. Here we discuss recent developments in identifying potential molecular targets and immunomodulatory approaches to preserve or protect barrier function and limit infarct damage and functional impairment. These include blocking harmful inflammatory signaling in endothelial cells, microglia/macrophages, or Th17/γδ T cells with biologics, third generation epoxyeicosatrienoic acid (EET) analogs with extended half-life, and miRNA antagomirs. Complementary beneficial pathways may be enhanced by miRNA mimetics or hyperbaric oxygenation. These immunomodulatory approaches could be used to greatly expand the therapeutic window for thrombolytic treatment with tissue plasminogen activator (t-PA). Moreover, nanoparticle technology allows for the selective targeting of endothelial cells for delivery of DNA/RNA oligonucleotides and neuroprotective drugs. In addition, although likely detrimental to the progression of ischemic stroke by inducing inflammation, oxidative stress, and neuronal cell death, 20-HETE may also reduce susceptibility of onset of ischemic stroke by maintaining autoregulation of cerebral blood flow. Although the interaction between inflammation and stroke is multifaceted, a better understanding of the mechanisms behind the pro-inflammatory state at all stages will hopefully help in developing novel immunomodulatory approaches to improve mortality and functional outcome of those inflicted with ischemic stroke.
Collapse
Affiliation(s)
- Shashank Shekhar
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA; Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Mallikarjuna R Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
4
|
El Amki M, Lerouet D, Garraud M, Teng F, Beray-Berthat V, Coqueran B, Barsacq B, Abbou C, Palmier B, Marchand-Leroux C, Margaill I. Improved Reperfusion and Vasculoprotection by the Poly(ADP-Ribose)Polymerase Inhibitor PJ34 After Stroke and Thrombolysis in Mice. Mol Neurobiol 2018; 55:9156-9168. [PMID: 29651748 DOI: 10.1007/s12035-018-1063-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
Benefits from thrombolysis with recombinant tissue plasminogen activator (rt-PA) after ischemic stroke remain limited due to a narrow therapeutic window, low reperfusion rates, and increased risk of hemorrhagic transformations (HT). Experimental data showed that rt-PA enhances the post-ischemic activation of poly(ADP-ribose)polymerase (PARP) which in turn contributes to blood-brain barrier injury. The aim of the present study was to evaluate whether PJ34, a potent PARP inhibitor, improves poor reperfusion induced by delayed rt-PA administration, exerts vasculoprotective effects, and finally increases the therapeutic window of rt-PA. Stroke was induced by thrombin injection (0.75 UI in 1 μl) in the left middle cerebral artery (MCA) of male Swiss mice. Administration of rt-PA (0.9 mg kg-1) or saline was delayed for 4 h after ischemia onset. Saline or PJ34 (3 mg kg-1) was given intraperitoneally twice, just after thrombin injection and 3 h later, or once, 3 h after ischemia onset. Reperfusion was evaluated by laser Doppler, vascular inflammation by immunohistochemistry of vascular cell adhesion molecule-1 (VCAM-1) expression, and vasospasm by morphometric measurement of the MCA. Edema, cortical lesion, and sensorimotor deficit were evaluated. Treatment with PJ34 improved rt-PA-induced reperfusion and promoted vascular protection including reduction in vascular inflammation (decrease in VCAM-1 expression), HT, and MCA vasospasm. Additionally, the combined treatment significantly reduced brain edema, cortical lesion, and sensorimotor deficit. In conclusion, the combination of the PARP inhibitor PJ34 with rt-PA after cerebral ischemia may be of particular interest in order to improve thrombolysis with an extended therapeutic window.
Collapse
Affiliation(s)
- Mohamad El Amki
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Dominique Lerouet
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Marie Garraud
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Fei Teng
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Virginie Beray-Berthat
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bérard Coqueran
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Benoît Barsacq
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Charlotte Abbou
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Bruno Palmier
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Catherine Marchand-Leroux
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France
| | - Isabelle Margaill
- EA4475 - "Pharmacologie de la Circulation Cérébrale", Faculté de Pharmacie de Paris, Université Paris Descartes, Université Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006, Paris, France.
| |
Collapse
|
5
|
Garraud M, Khacef K, Vion AC, Leconte C, Yin M, Renard JM, Marchand-Leroux C, Boulanger CM, Margaill I, Beray-Berthat V. Recombinant tissue plasminogen activator enhances microparticle release from mouse brain-derived endothelial cells through plasmin. J Neurol Sci 2016; 370:187-195. [PMID: 27772757 DOI: 10.1016/j.jns.2016.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
Thrombolysis with recombinant tissue plasminogen activator (rt-PA) is currently the only approved pharmacological strategy for acute ischemic stroke. However, rt-PA exhibits vascular toxicity mainly due to endothelial damage. To investigate the mechanisms underlying rt-PA-induced endothelial alterations, we assessed the role of rt-PA in the generation of endothelial microparticles (EMPs), emerging biological markers and effectors of endothelial dysfunction. The mouse brain-derived endothelial cell line bEnd.3 was used. Cells were treated with rt-PA at 20, 40 or 80μg/ml for 15 or 24h, and EMPs were quantified in the culture media using Annexin-V staining coupled with flow cytometry. Rt-PA enhanced EMP release from bEnd.3 cells with a maximal increase at the 40μg/ml dose for 24h (+78% compared to controls). Using tranexamic acid and aprotinin we demonstrated that plasmin is responsible for rt-PA-induced EMP release. The p38 MAPK inhibitor SB203580 and the poly(ADP-ribose)polymerase (PARP) inhibitor PJ34 also reduced rt-PA-induced EMP production, suggesting that p38 MAPK and PARP are downstream intracellular effectors of rt-PA/plasmin. Rt-PA also altered through plasmin the morphology and the confluence of bEnd.3 cells. By contrast, these changes did not implicate p38 MAPK and PARP. This study demonstrates that rt-PA induces the production of microparticles by cerebral endothelial cells, through plasmin, p38 MAPK and PARP pathways. Determining the phenotype of these EMPs to clarify their role on the endothelium in ischemic conditions could thus be of particular interest.
Collapse
Affiliation(s)
- Marie Garraud
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kahina Khacef
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne-Clémence Vion
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Claire Leconte
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Min Yin
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Marie Renard
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal M Boulanger
- INSERM, U970, Paris Cardiovascular Research Center, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Margaill
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Virginie Beray-Berthat
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
6
|
Teng F, Beray-Berthat V, Coqueran B, Lesbats C, Kuntz M, Palmier B, Garraud M, Bedfert C, Slane N, Bérézowski V, Szeremeta F, Hachani J, Scherman D, Plotkine M, Doan BT, Marchand-Leroux C, Margaill I. Prevention of rt-PA induced blood-brain barrier component degradation by the poly(ADP-ribose)polymerase inhibitor PJ34 after ischemic stroke in mice. Exp Neurol 2013; 248:416-28. [PMID: 23876515 DOI: 10.1016/j.expneurol.2013.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 01/24/2023]
Abstract
Recombinant tissue plasminogen activator (rt-PA) is the only pharmacological treatment approved for thrombolysis in patients suffering from ischemic stroke, but its administration aggravates the risk of hemorrhagic transformations. Experimental data demonstrated that rt-PA increases the activity of poly(ADP-ribose)polymerase (PARP). The aim of the present study was to investigate whether PJ34, a potent (PARP) inhibitor, protects the blood-brain barrier components from rt-PA toxicity. In our mouse model of cerebral ischemia, administration of rt-PA (10 mg/kg, i.v.) 6h after ischemia aggravated the post-ischemic degradation of ZO-1, claudin-5 and VE-cadherin, increased the hemorrhagic transformations (assessed by brain hemoglobin content and magnetic resonance imaging). Furthermore, rt-PA also aggravated ischemia-induced functional deficits. Combining PJ34 with rt-PA preserved the expression of ZO-1, claudin-5 and VE-cadherin, reduced the hemorrhagic transformations and improved the sensorimotor performances. In vitro studies also demonstrated that PJ34 crosses the blood-brain barrier and may thus exert its protective effect by acting on endothelial and/or parenchymal cells. Thus, co-treatment with a PARP inhibitor seems to be a promising strategy to reduce rt-PA-induced vascular toxicity after stroke.
Collapse
Affiliation(s)
- Fei Teng
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" EA4475, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Doeppner TR, Mlynarczuk-Bialy I, Kuckelkorn U, Kaltwasser B, Herz J, Hasan MR, Hermann DM, Bähr M. The novel proteasome inhibitor BSc2118 protects against cerebral ischaemia through HIF1A accumulation and enhanced angioneurogenesis. ACTA ACUST UNITED AC 2013; 135:3282-97. [PMID: 23169919 DOI: 10.1093/brain/aws269] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Only a minority of stroke patients receive thrombolytic therapy. Therefore, new therapeutic strategies focusing on neuroprotection are under review, among which, inhibition of the proteasome is attractive, as it affects multiple cellular pathways. As proteasome inhibitors like bortezomib have severe side effects, we applied the novel proteasome inhibitor BSc2118, which is putatively better tolerated, and analysed its therapeutic potential in a mouse model of cerebral ischaemia. Stroke was induced in male C57BL/6 mice using the intraluminal middle cerebral artery occlusion model. BSc2118 was intrastriatally injected 12 h post-stroke in mice that had received normal saline or recombinant tissue-plasminogen activator injections during early reperfusion. Brain injury, behavioural tests, western blotting, MMP9 zymography and analysis of angioneurogenesis were performed for up to 3 months post-stroke. Single injections of BSc2118 induced long-term neuroprotection, reduced functional impairment, stabilized blood-brain barrier through decreased MMP9 activity and enhanced angioneurogenesis when given no later than 12 h post-stroke. On the contrary, recombinant tissue-plasminogen activator enhanced brain injury, which was reversed by BSc2118. Protein expression of the transcription factor HIF1A was significantly increased in saline-treated and recombinant tissue-plasminogen activator-treated mice after BSc2118 application. In contrast, knock-down of HIF1A using small interfering RNA constructs or application of the HIF1A inhibitor YC1 (now known as RNA-binding motif, single-stranded-interacting protein 1 (RBMS1)) reversed BSc2118-induced neuroprotection. Noteworthy, loss of neuroprotection after combined treatment with BSc2118 and YC1 in recombinant tissue-plasminogen activator-treated animals was in the same order as in saline-treated mice, i.e. reduction of recombinant tissue-plasminogen activator toxicity through BSc2118 did not solely depend on HIF1A. Thus, the proteasome inhibitor BSc2118 is a promising new candidate for stroke therapy, which may in addition alleviate recombinant tissue-plasminogen activator-induced brain toxicity.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University of Duisburg-Essen Medical School, Essen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Haddad M, Beray-Berthat V, Coqueran B, Plotkine M, Marchand-Leroux C, Margaill I. Combined therapy with PJ34, a poly(ADP-ribose)polymerase inhibitor, reduces tissue plasminogen activator-induced hemorrhagic transformations in cerebral ischemia in mice. Fundam Clin Pharmacol 2012; 27:393-401. [DOI: 10.1111/j.1472-8206.2012.01036.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Harston GWJ, Sutherland BA, Kennedy J, Buchan AM. The contribution of L-arginine to the neurotoxicity of recombinant tissue plasminogen activator following cerebral ischemia: a review of rtPA neurotoxicity. J Cereb Blood Flow Metab 2010; 30:1804-16. [PMID: 20736961 PMCID: PMC3023931 DOI: 10.1038/jcbfm.2010.149] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alteplase is the only drug licensed for acute ischemic stroke, and in this formulation, the thrombolytic agent recombinant tissue plasminogen activator (rtPA) is stabilized in a solution of L-arginine. Improved functional outcomes after alteplase administration have been shown in clinical trials, along with improved histological and behavioral measures in experimental models of embolic stroke. However, in animal models of mechanically induced ischemia, alteplase can exacerbate ischemic damage. We have systematically reviewed the literature of both rtPA and L-arginine administration in mechanical focal ischemia. The rtPA worsens ischemic damage under certain conditions, whereas L-arginine can have both beneficial and deleterious effects dependent on the time of administration. The interaction between rtPA and L-arginine may be leading to the production of nitric oxide, which can cause direct neurotoxicity, altered cerebral blood flow, and disruption of the neurovascular unit. We suggest that alternative formulations of rtPA, in the absence of L-arginine, would provide new insight into rtPA neurotoxicity, and have the potential to offer more efficacious thrombolytic therapy for ischemic stroke patients.
Collapse
Affiliation(s)
- George W J Harston
- Nuffield Department of Clinical Medicine, Acute Stroke Programme, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
10
|
Schwarting S, Litwak S, Hao W, Bähr M, Weise J, Neumann H. Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke 2008; 39:2867-75. [PMID: 18658037 DOI: 10.1161/strokeaha.108.513978] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Systemic injection of hematopoietic stem cells after ischemic cardiac or neural lesions is one approach to promote tissue repair. However, mechanisms of possible protective or reparative effects are poorly understood. In this study we analyzed the effect of lineage-negative bone marrow-derived hematopoietic stem and precursor cells (Lin(-)-HSCs) on ischemic brain injury in mice. METHODS Lin(-)-HSCs were injected intravenously at 24 hours after onset of a 45-minute transient cerebral ischemia. Effects of Lin(-)-HSCs injection on infarct size, apoptotic cell death, postischemic inflammation and cytokine gene transcription were analyzed. RESULTS Green fluorescent protein (GFP)-marked Lin(-)-HSCs were detected at 24 hours after injection in the spleen and later in ischemic brain parenchyma, expressing microglial but no neural marker proteins. Tissue injury assessment showed significantly smaller infarct volumes and less apoptotic neuronal cell death in peri-infarct areas of Lin(-)-HSC-treated animals. Analysis of immune cell infiltration in ischemic hemispheres revealed a reduction of invading T cells and macrophages in treated mice. Moreover, Lin(-)-HSC therapy counter-regulated proinflammatory cytokine and chemokine receptor gene transcription within the spleen. CONCLUSIONS Our data demonstrate that systemically applied Lin(-)-HSCs reduce cerebral postischemic inflammation, attenuate peripheral immune activation and mediate neuroprotection after ischemic stroke.
Collapse
Affiliation(s)
- Sönke Schwarting
- Department of Neurology, Cerebral Ischemia Research Group, University of Göttingen Medical School, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Haddad M, Beray-Berthat V, Coqueran B, Palmier B, Szabo C, Plotkine M, Margaill I. Reduction of hemorrhagic transformation by PJ34, a poly(ADP-ribose)polymerase inhibitor, after permanent focal cerebral ischemia in mice. Eur J Pharmacol 2008; 588:52-7. [PMID: 18468597 DOI: 10.1016/j.ejphar.2008.04.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/28/2008] [Accepted: 04/03/2008] [Indexed: 11/26/2022]
Abstract
Hemorrhagic transformation is an aggravating event that occurs in 15 to 43% of patients suffering from ischemic stroke. This phenomenon due to blood-brain barrier breakdown appears to be mediated in part by matrix metalloproteinases (MMPs) among which MMP-2 and MMP-9 could be particularly involved. Recent experimental studies demonstrated that post-ischemic MMP-9 overexpression is regulated by poly(ADP-ribose)polymerase (PARP). In this context, our study aimed to evaluate the effect of PJ34 (N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-2-(N,N-dimethylamino)acetamide), a potent PARP inhibitor, on MMP-2 and MMP-9 levels and on hemorrhagic transformations in a model of permanent focal cerebral ischemia in mice. PJ34 (6.25-12.5 mg/kg, i.p.) was given at the time of ischemia onset and 4 h later. Hemorrhagic transformations, divided into microscopic and macroscopic hemorrhages, were counted 48 h after ischemia on 12 coronal brain slices. Microscopic and macroscopic hemorrhages were respectively reduced by 38% and 69% with 6.25 mg/kg PJ34. The anti-hemorrhagic effect of PJ34 was associated with a 57% decrease in MMP-9 overexpression assessed by gelatin zymography. No increase in MMP-2 activity was observed after ischemia in our model. The vascular protection achieved by PJ34 was associated with a reduction in the motor deficit (P<0.05) and in infarct volume (-31%, P<0.01). In conclusion, our study demonstrates for the first time that PJ34 reduces hemorrhagic transformations after cerebral ischemia. Thus this PARP inhibitor exhibits both anti-hemorrhagic and neuroprotective effects that may be of valuable interest for the treatment of stroke.
Collapse
Affiliation(s)
- Marianne Haddad
- Equipe de recherche "Pharmacologie de la Circulation Cérébrale" (EA 2510), Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | | | | | | | |
Collapse
|