1
|
Agouridis AP, Palli N, Karagiorga VE, Konsoula A, Markaki L, Spernovasilis N, Tsioutis C. Statins in Children with Neurofibromatosis Type 1: A Systematic Review of Randomized Controlled Trials. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1556. [PMID: 37761518 PMCID: PMC10528298 DOI: 10.3390/children10091556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Statins, apart from their plasma-cholesterol-lowering ability, exert several pleiotropic effects, making them a potential treatment for other diseases. Animal studies have showed that statins, through the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase, can affect the Ras/MAPK pathway, thus providing impetus to examine the efficacy of statins in the pediatric population with neurofibromatosis type 1 (NF1). We aimed to systematically address all relevant evidence of statin treatment in children with NF1. METHODS We searched PubMed and Cochrane Library resources up to 2 June 2023 for randomized controlled trials (RCTs) written in English and evaluating statins versus placebo in children with NF1 (PROSPERO registration number: CRD42023439424). RESULTS Seven RCTs were suitable to be included in this qualitative synthesis, with a total participation of 336 children with NF1. The duration of the studies ranged from 12 to 52 weeks. The mean age of the pediatric population was 10.9 years old. Three studies investigated the role of simvastatin, while four studies examined lovastatin. According to our analysis, neither simvastatin nor lovastatin improved cognitive function, full-scale intelligence, school performance, attention problems, or internalizing behavioral problems when compared with placebo in children with NF1. Statins were well tolerated in all included RCTs. CONCLUSION Although safe, current evidence demonstrates that statins exert no beneficial effect in cognitive function and behavioral problems in children with NF1.
Collapse
Affiliation(s)
- Aris P. Agouridis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (N.P.); (C.T.)
- Department of Internal Medicine, German Oncology Center, 4108 Limassol, Cyprus
| | - Nikoletta Palli
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (N.P.); (C.T.)
| | | | - Afroditi Konsoula
- Department of Pediatrics, General Hospital of Sitia, 72300 Sitia, Greece;
| | - Lamprini Markaki
- “Iliaktida” Pediatric & Adolescents Medical Center, 4001 Limassol, Cyprus;
| | | | - Constantinos Tsioutis
- School of Medicine, European University Cyprus, 2404 Nicosia, Cyprus; (N.P.); (C.T.)
| |
Collapse
|
2
|
Wang W, Wei CJ, Cui XW, Li YH, Gu YH, Gu B, Li QF, Wang ZC. Impacts of NF1 Gene Mutations and Genetic Modifiers in Neurofibromatosis Type 1. Front Neurol 2021; 12:704639. [PMID: 34566848 PMCID: PMC8455870 DOI: 10.3389/fneur.2021.704639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a tumor predisposition genetic disorder that directly affects more than 1 in 3,000 individuals worldwide. It results from mutations of the NF1 gene and shows almost complete penetrance. NF1 patients show high phenotypic variabilities, including cafe-au-lait macules, freckling, or other neoplastic or non-neoplastic features. Understanding the underlying mechanisms of the diversities of clinical symptoms might contribute to the development of personalized healthcare for NF1 patients. Currently, studies have shown that the different types of mutations in the NF1 gene might correlate with this phenomenon. In addition, genetic modifiers are responsible for the different clinical features. In this review, we summarize different genetic mutations of the NF1 gene and related genetic modifiers. More importantly, we focus on the genotype–phenotype correlation. This review suggests a novel aspect to explain the underlying mechanisms of phenotypic heterogeneity of NF1 and provides suggestions for possible novel therapeutic targets to prevent or delay the onset and development of different manifestations of NF1.
Collapse
Affiliation(s)
- Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Jiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Hua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Tiwari A, Rahi S, Mehan S. Elucidation of Abnormal Extracellular Regulated Kinase (ERK) Signaling and Associations with Syndromic and Non-syndromic Autism. Curr Drug Targets 2021; 22:1071-1086. [PMID: 33081671 DOI: 10.2174/1389450121666201020155010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/21/2020] [Accepted: 09/26/2020] [Indexed: 11/22/2022]
Abstract
Autism is a highly inherited and extremely complex disorder in which results from various cases indicate chromosome anomalies, unusual single-gene mutations, and multiplicative effects of particular gene variants, characterized primarily by impaired speech and social interaction and restricted behavior. The precise etiology of Autism Spectrum Disorder (ASD) is currently unclear. The extracellular signal-regulated kinase (ERK) signaling mechanism affects neurogenesis and neuronal plasticity during the development of the central nervous mechanism. In this regard, the pathway of ERK has recently gained significant interest in the pathogenesis of ASD. The mutation occurs in a few ERK components. Besides, the ERK pathway dysfunction lies in the upstream of modified translation and contributes to synapse pathology in syndromic types of autism. In this review, we highlight the ERK pathway as a target for neurodevelopmental disorder autism. In addition, we summarize the regulation of the ERK pathway with ERK inhibitors in neurological disorders. In conclusion, a better understanding of the ERK signaling pathway provides a range of therapeutic options for autism spectrum disorder.
Collapse
Affiliation(s)
- Aarti Tiwari
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Saloni Rahi
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
Cui XW, Ren JY, Gu YH, Li QF, Wang ZC. NF1, Neurofibromin and Gene Therapy: Prospects of Next-Generation Therapy. Curr Gene Ther 2020; 20:100-108. [PMID: 32767931 DOI: 10.2174/1566523220666200806111451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022]
Abstract
Neurofibromatosis type 1 [NF1] is an autosomal dominant genetic disorder affecting multiple organs. NF1 is well known for its various clinical manifestations, including café-au-late macules, Lisch nodules, bone deformity and neurofibromas. However, there is no effective therapy for NF1. Current therapies are aimed at alleviating NF1 clinical symptoms but not curing the disease. By altering pathogenic genes, gene therapy regulates cell activities at the nucleotide level. In this review, we described the structure and functions of neurofibromin domains, including GAP-related domain [GRD], cysteine-serine rich domain [CSRD], leucine-rich domain [LRD] and C-terminal domain [CTD], which respectively alter downstream pathways. By transfecting isolated sequences of these domains, researchers can partially restore normal cell functions in neurofibroma cell lines. Furthermore, recombinant transgene sequences may be designed to encode truncated proteins, which is functional and easy to be packaged into viral vectors. In addition, the treatment effect of gene therapy is also determined by various factors such as the vectors selection, transgene packaging strategies and drug administration. We summarized multiple NF1 gene therapy strategies and discussed their feasibility from multiple angles. Different protein domains alter the function and downstream pathways of neurofibromin.
Collapse
Affiliation(s)
- Xi-Wei Cui
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jie-Yi Ren
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi-Hui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhi-Chao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
5
|
Green T, Naylor PE, Davies W. Attention deficit hyperactivity disorder (ADHD) in phenotypically similar neurogenetic conditions: Turner syndrome and the RASopathies. J Neurodev Disord 2017; 9:25. [PMID: 28694877 PMCID: PMC5502326 DOI: 10.1186/s11689-017-9205-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/18/2017] [Indexed: 11/17/2022] Open
Abstract
Background ADHD (attention deficit hyperactivity disorder) is a common neurodevelopmental disorder. There has been extensive clinical and basic research in the field of ADHD over the past 20 years, but the mechanisms underlying ADHD risk are multifactorial, complex and heterogeneous and, as yet, are poorly defined. In this review, we argue that one approach to address this challenge is to study well-defined disorders to provide insights into potential biological pathways that may be involved in idiopathic ADHD. Main body To address this premise, we selected two neurogenetic conditions that are associated with significantly increased ADHD risk: Turner syndrome and the RASopathies (of which Noonan syndrome and neurofibromatosis type 1 are the best-defined with regard to ADHD-related phenotypes). These syndromes were chosen for two main reasons: first, because intellectual functioning is relatively preserved, and second, because they are strikingly phenotypically similar but are etiologically distinct. We review the cognitive, behavioural, neural and cellular phenotypes associated with these conditions and examine their relevance as a model for idiopathic ADHD. Conclusion We conclude by discussing current and future opportunities in the clinical and basic research of these conditions, which, in turn, may shed light upon the biological pathways underlying idiopathic ADHD.
Collapse
Affiliation(s)
- Tamar Green
- Center for Interdisciplinary Brain Sciences Research, Stanford University School of Medicine, Stanford, USA
| | - Paige E Naylor
- Department of Clinical Psychology, Palo Alto University, Palo Alto, CA USA
| | - William Davies
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics and Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.,School of Psychology, Cardiff University, Tower Building, 70, Park Place, Cardiff, CF10 3AT UK.,Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
6
|
Blanco‐Suárez E, Caldwell ALM, Allen NJ. Role of astrocyte-synapse interactions in CNS disorders. J Physiol 2017; 595:1903-1916. [PMID: 27381164 PMCID: PMC5350444 DOI: 10.1113/jp270988] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022] Open
Abstract
Astrocytes comprise half of the cells in the brain. Although astrocytes have traditionally been described as playing a supportive role for neurons, they have recently been recognized as active participants in the development and plasticity of dendritic spines and synapses. Astrocytes can eliminate dendritic spines, induce synapse formation, and regulate neurotransmission and plasticity. Dendritic spine and synapse impairments are features of many neurological disorders, including autism spectrum disorder, schizophrenia, and Alzheimer's disease. In this review we will present evidence from multiple neurological disorders demonstrating that changes in astrocyte-synapse interaction contribute to the pathologies. Genomic analysis has connected altered astrocytic gene expression with synaptic deficits in a number of neurological disorders. Alterations in astrocyte-secreted factors have been implicated in the neuronal morphology and synaptic changes seen in neurodevelopmental disorders, while alteration in astrocytic glutamate uptake is a core feature of multiple neurodegenerative disorders. This evidence clearly demonstrates that maintaining astrocyte-synapse interaction is crucial for normal central nervous system functioning. Obtaining a better understanding of the role of astrocytes at synapses in health and disease will provide a new avenue for future therapeutic targeting.
Collapse
Affiliation(s)
- Elena Blanco‐Suárez
- Salk Institute for Biological StudiesMolecular Neuroscience Laboratory10010 North Torrey Pines RdLa JollaCA92037USA
| | - Alison L. M. Caldwell
- Salk Institute for Biological StudiesMolecular Neuroscience Laboratory10010 North Torrey Pines RdLa JollaCA92037USA
| | - Nicola J. Allen
- Salk Institute for Biological StudiesMolecular Neuroscience Laboratory10010 North Torrey Pines RdLa JollaCA92037USA
| |
Collapse
|
7
|
Duarte JV, Ribeiro MJ, Violante IR, Cunha G, Silva E, Castelo-Branco M. Multivariate pattern analysis reveals subtle brain anomalies relevant to the cognitive phenotype in neurofibromatosis type 1. Hum Brain Mapp 2012; 35:89-106. [PMID: 22965669 DOI: 10.1002/hbm.22161] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 06/07/2012] [Accepted: 06/13/2012] [Indexed: 11/08/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a common genetic condition associated with cognitive dysfunction. However, the pathophysiology of the NF1 cognitive deficits is not well understood. Abnormal brain structure, including increased total brain volume, white matter (WM) and grey matter (GM) abnormalities have been reported in the NF1 brain. These previous studies employed univariate model-driven methods preventing detection of subtle and spatially distributed differences in brain anatomy. Multivariate pattern analysis allows the combination of information from multiple spatial locations yielding a discriminative power beyond that of single voxels. Here we investigated for the first time subtle anomalies in the NF1 brain, using a multivariate data-driven classification approach. We used support vector machines (SVM) to classify whole-brain GM and WM segments of structural T1 -weighted MRI scans from 39 participants with NF1 and 60 non-affected individuals, divided in children/adolescents and adults groups. We also employed voxel-based morphometry (VBM) as a univariate gold standard to study brain structural differences. SVM classifiers correctly classified 94% of cases (sensitivity 92%; specificity 96%) revealing the existence of brain structural anomalies that discriminate NF1 individuals from controls. Accordingly, VBM analysis revealed structural differences in agreement with the SVM weight maps representing the most relevant brain regions for group discrimination. These included the hippocampus, basal ganglia, thalamus, and visual cortex. This multivariate data-driven analysis thus identified subtle anomalies in brain structure in the absence of visible pathology. Our results provide further insight into the neuroanatomical correlates of known features of the cognitive phenotype of NF1.
Collapse
Affiliation(s)
- João V Duarte
- Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
8
|
Armstrong BC, Le Boutillier JC, Petit TL. Ultrastructural synaptic changes associated with neurofibromatosis type 1: a quantitative analysis of hippocampal region CA1 in a Nf1(+/-) mouse model. Synapse 2011; 66:246-55. [PMID: 22121000 DOI: 10.1002/syn.21507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/28/2011] [Accepted: 11/02/2011] [Indexed: 11/06/2022]
Abstract
Neurofibromatosis type 1 (NF1) is one of the most frequently diagnosed autosomal dominant inherited disorders resulting in neurological dysfunction, including an assortment of learning disabilities and cognitive deficits. To elucidate the neural mechanisms underlying the disorder, we employed a mouse model (Nf1(+/-) ) to conduct a quantitative analysis of ultrastructural changes associated with the NF1 disorder. Using both serial light and electron microscopy, we examined reconstructions of the CA1 region of the hippocampus, which is known to play a central role in many of the dysfunctions associated with NF1. In general, the morphology of synapses in both the Nf1(+/-) and wild-type groups of animals were similar. No differences were observed in synapse per neuron density, pre- and postsynaptic areas, or lengths. However, concave synapses were found to show a lower degree of curvature in the Nf1(+/-) mutant than in the wild type. These results indicate that the synaptic ultrastructure of Nf1(+/-) mice appears relatively normal with the exception of the degree of synaptic curvature in concave synapses, adding further support to the importance of synaptic curvature in synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Blair C Armstrong
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
9
|
Neurofibromin and Amyloid Precursor Protein Expression in Dopamine D3 Receptor Knock-Out Mice Brains. Neurochem Res 2010; 36:426-34. [DOI: 10.1007/s11064-010-0359-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
|
10
|
Schnackenberg B, Saini U, Robinson B, Ali S, Patterson T. An acute dose of gamma-hydroxybutyric acid alters gene expression in multiple mouse brain regions. Neuroscience 2010; 170:523-41. [DOI: 10.1016/j.neuroscience.2010.06.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/04/2010] [Accepted: 06/21/2010] [Indexed: 10/19/2022]
|
11
|
Zhao Z, Zhao S, Xu N, Yu C, Guan S, Liu X, Huang L, Liao W, Jia W. Lovastatin improves neurological outcome after nucleus basalis magnocellularis lesion in rats. Neuroscience 2010; 167:954-63. [DOI: 10.1016/j.neuroscience.2010.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/13/2010] [Accepted: 02/19/2010] [Indexed: 12/15/2022]
|
12
|
Abstract
Mutations of the neurofibromin gene (NF1) cause neurofibromatosis type 1 (NF1), a disease in which learning disabilities are common. Learning deficits also are observed in mice with a heterozygous mutation of Nf1 (Nf1(+/-)). Dysregulation of regulated neurotransmitter release has been observed in Nf1(+/-) mice. However, the role of presynaptic voltage-gated Ca(2+) channels mediating this release has not been investigated. We investigated whether Ca(2+) currents and transmitter release were affected by reduced neurofibromin in Nf1(+/-) mice. Hippocampal Ca(2+) current density was greater in neurons from Nf1(+/-) mice and a greater fraction of Ca(2+) currents was activated at less depolarized potentials. In addition, release of the excitatory neurotransmitter, glutamate, was increased in neuronal cortical cultures from Nf1(+/-) mice. Dendritic complexity and axonal length were also increased in neurons Nf1(+/-) mice compared to wild-type neurons, linking loss of neurofibromin to developmental changes in hippocampal axonal/cytoskeletal dynamics. Collectively, these results show that altered Ca(2+) channel density and transmitter release, along with increased axonal growth may account for the abnormal nervous system functioning in NF1.
Collapse
|